Молекулярные механизмы абсорбции длинноцепочечных жирных кислот в кишечнике


https://doi.org/10.21886/2219-8075-2018-9-3-29-36

Полный текст:


Аннотация

В статье представлены данные о роли находящихся на щеточной каемке энтероцита, липид-связывающих белков в кишечной абсорбции длинноцепочечных жирных кислот и об изменениях липидного обмена, возникающих в результате нарушений процесса абсорбции. Системный поиск литературы проведен по базам данных Scopus, Web of Science, MedLine.


Об авторах

А. Х. Каде
Кубанский государственный медицинский университет, Краснодар
Россия

Каде Азамат Халидович, д.м.н., профессор, зав. кафедрой общей и клинической патологической физиологии



А. И. Трофименко
Кубанский государственный медицинский университет, Краснодар
Россия

Трофименко Артем Иванович, к.м.н., ассистент кафедры общей и клинической патологической физиологии

SPIN-код: 8810-2264



П. П. Поляков
Кубанский государственный медицинский университет, Краснодар
Россия

Поляков Павел Павлович, ассистент кафедры общей и клинической патологической физиологии

 



Л. Р. Гусарук
Кубанский государственный медицинский университет, Краснодар
Россия

Гусарук Любовь Рамазановна, к.б.н., доцент кафедры биологии с курсом медицинской генетики



О. П. Ишевская
Кубанский государственный медицинский университет, Краснодар
Россия

Ишевская Ольга Петровна, аспирант кафедры общей и клинической патологической физиологии



Е. А. Шадже
Кубанский государственный медицинский университет, Краснодар
Россия

Шадже Евгения Азаматовна, к.м.н., ассистент кафедры общей и клинической патологической физиологии



Список литературы

1. Zheng H., Lorenzen J.K., Astrup A., Larsen L.H., Yde C.C., et al. Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women: an NMR-based metabolomics investigation // Nutrients. – 2016. – V. 8. – №. 3. – P. 108. DOI: 10.3390/nu8030108

2. De Wit N.J.W., Boekschoten M.V., Bachmair E.M., Hooiveld G.J., de Groot P.J., et al. Dose-dependent effects of dietary fat on development of obesity in relation to intestinal differential gene expression in C57BL/6J mice // PLoS One. – 2011. – V. 6. – №. 4. – P. e19145. DOI: 10.1371/journal.pone.0019145

3. Nordestgaard B.G., Langsted A., Mora S., Kolovou G., Baum H., Bruckert E. et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine // Eur Heart J.– 2016. – V. 37. – №. 25. – P. 1944-1958. doi: 10.1093/eurheartj/ehw152

4. Boden G., Chen X., Ruiz J., White J.V., Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake // J Clin Invest.– 1994. – V. 93. – №. 6. – P. 2438-2446. DOI: 10.1172/JCI117252

5. Ramasamy I. Update on the molecular biology of dyslipidemias // Clin Chim Acta.– 2016. – V. 454. – P. 143-185. DOI: 10.1016/j.cca.2015.10.033

6. Taskinen M.R., Borén J. New insights into the pathophysiology of dyslipidemia in type 2 diabetes // Atherosclerosis.– 2015. – V. 239. – №. 2. – P. 483-495. DOI: 10.1016/j.atherosclerosis.2015.01.039

7. Mozaff arian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review // Circulation.– 2016. – V. 133. – №. 2. – P. 187-225. DOI: 10.1161/CIRCULATIONAHA.115.018585

8. Gajda A.M., Storch J. Enterocyte fatty acid-binding proteins (FABPs): different functions of liver and intestinal FABPs in the intestine // Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA).– 2015. – V. 93. – P. 9-16. DOI: 10.1016/j.plefa.2014.10.001

9. Buttet M., Traynard V., Tran T.T., Besnard P., Poirier H., Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins // Biochimie.– 2014. – V. 96. – P. 37-47. DOI: 10.1016/j.biochi.2013.08.011

10. Ge F., Walewski J.L., Torghabeh M.H., Lobdell H.4th, Hu C., Zhou S. et al. Facilitated long chain fatty acid uptake by adipocytes remains upregulated relative to BMI for more than a year after major bariatric surgical weight loss // Obesity. – 2016. – V. 24. – №. 1. – P. 113-122. DOI: 10.1002/oby.21249

11. Yen C.L.E., Nelson D.W., Yen M.I. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism // Journal of lipid research. – 2015. – V. 56. – №. 3. – P. 489-501. DOI: 10.1194/jlr.R052902

12. Esteves A., Knoll-Gellida A., Canclini L., Silvarrey M.C., André M., Babin P.J. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei // Journal of lipid research. – 2016. – V. 57. – №. 2. – P. 219-232. DOI: 10.1194/jlr.M062232

13. Glatz J.F.C., Luiken J.J.F.P., Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease // Physiological reviews. – 2010. – V. 90. – №. 1. – P. 367-417. DOI: 10.1152/physrev.00003.2009

14. Abumrad N.A., Davidson N.O. Role of the gut in lipid homeostasis // Physiological reviews. – 2012. – V. 92. – №. 3. – P. 1061-1085. DOI: 10.1152/physrev.00019.2011

15. Doege H., Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models // Physiology.– 2006. – V. 21. – №. 4. – P. 259-268. DOI: 10.1152/physiol.00014.2006

16. Johnson A.R., Qin Y., Cozzo A.J., Freemerman A.J., Huang M.J., Zhao L. Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation // Molecular metabolism. – 2016. – V. 5. – №. 7. – P. 506-526. DOI: 10.1016/j.molmet.2016.04.005

17. Grevengoed T.J., Klett E.L., Coleman R.A. Acyl-CoA metabolism and partitioning // Annu Rev Nutr.– 2014. – V. 34. – P. 1-30. DOI: 10.1146/annurev-nutr-071813-105541

18. Milger K., Herrmann T., Becker C., Gotthardt D., Zickwolf J., Ehehalt R. Cellular uptake of fatty acids driven by the ERlocalized acyl-CoA synthetase FATP4 // J Cell Sci. – 2006. – V. 119. – №. 22. – P. 4678-4688. DOI: 10.1242/jcs.03280

19. Gimeno R.E., Hirsch D.J., Punreddy S., Sun Y., Ortegon A.M., et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality // J Biol Chem. – 2003. – V. 278. – №. 49. – P. 49512-49516. DOI: 10.1074/jbc.M309759200

20. Gertow K., Bellanda M., Eriksson P., Boquist S., Hamsten A., et al. Genetic and structural evaluation of fatty acid transport protein-4 in relation to markers of the insulin resistance syndrome // J Clin Endocrinol Metab.– 2004. – V. 89. – №. 1. – P. 392-399. DOI: 10.1210/jc.2003-030682

21. Stahl A., Gimeno R.E., Tartaglia L.A., Lodish H.F. Fatty acid transport proteins: a current view of a growing family // Trends Endocrinol Metab.– 2001. – V. 12. – №. 6. – P. 266-273.

22. Hall A.M., Wiczer B.M., Herrmann T., Stremmel W., Bernlohr D.A. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice // J Biol Chem.– 2005. – V. 280. – №. 12. – P. 11948-11954. DOI: 10.1074/jbc.M412629200

23. Bowman T.A., O’Keeffe K.R., D’Aquila T., Yan Q.W., Griffin J.D., et al. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption // Mol Metab. – 2016. – V. 5. – №. 3. – P. 210-220. DOI: 10.1016/j.molmet.2016.01.001

24. Shim J., Moulson C.L., Newberry E.P., Lin M.H., Xie Y., et al. Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice // J Lipid Res.– 2009. – V. 50. – №. 3. – P. 491-500. DOI: 10.1194/jlr.M800400-JLR200

25. Meller N., Morgan M.E., Wong W.P., Altemus J.B., Sehayek E. Targeting of Acyl-CoA synthetase 5 decreases jejunal fatty acid activation with no effect on dietary long-chain fatty acid absorption // Lipids Health Dis.– 2013. – V. 12. – №. 1. – P. 88. DOI: 10.1186/1476-511X-12-88

26. Frochot V., Alqub M., Cattin A.L., Carrière V., Houllier A., et al. Th e transcription factor HNF-4α: a key factor of the intestinal uptake of fatty acids in mouse // Am J Physiol Gastrointest Liver Physiol.– 2012. – V. 302. – №. 11. – P. G1253-G1263. DOI: 10.1152/ajpgi.00329.2011

27. Poreba M.A., Dong C.X., Li S.K., Stahl A., Miner J.H., Brubaker P.L. Role of fatty acid transport protein 4 in oleic acid-induced glucagon-like peptide-1 secretion from murine intestinal L cells // Am J Physiol Endocrinol Metab.– 2012. – V. 303. – №. 7. – P. E899-E907. DOI: 10.1152/ajpendo.00116.2012

28. Hermansen K., Bækdal T.A., Düring M., Pietraszek A., Mortensen L.S., et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, cross-over trial // Diabetes Obes Metab. – 2013. – V. 15. – №. 11. – P. 1040-1048. DOI: 10.1111/dom.12133

29. Oberland S., Ackels T., Gaab S., Pelz T., Spehr J., et al. CD36 is involved in oleic acid detection by the murine olfactory system // Front Cell Neurosci. – 2015. – V. 9. – P. 366. DOI: 10.3389/fncel.2015.00366

30. Martin C., Chevrot M., Poirier H., Passilly-Degrace P., Niot I., Besnard P. CD36 as a lipid sensor // Physiol Behav.– 2011. – V. 105. – №. 1. – P. 36-42. DOI: 10.1016/j.physbeh.2011.02.029

31. Zani I.A., Stephen S.L., Mughal N.A., Russell D., Homer Vanniasinkam S., et al. Scavenger receptor structure and function in health and disease // Cells.– 2015. – V. 4. – №. 2. – P. 178-201. DOI: 10.3390/cells4020178

32. Su X., Abumrad N.A. Cellular fatty acid uptake: a pathway under construction // Trends Endocrinol Metab.– 2009. – V. 20. – №. 2. – P. 72-77. DOI: 10.1016/j.tem.2008.11.001

33. Pepino M.Y., Kuda O., Samovski D., Abumrad N.A. Structurefunction of CD36 and importance of fatty acid signal transduction in fat metabolism // Annu Rev Nutr.– 2014. – V. 34. – P. 281-303. DOI: 10.1146/annurev-nutr-071812-161220

34. Iqbal J., Hussain M.M. Intestinal lipid absorption // Am J Physiol Endocrinol Metab.– 2009. – V. 296. – №. 6. – P. E1183-E1194. DOI: 10.1152/ajpendo.90899.2008

35. Sukhotnik I., Gork A.S., Chen M., Drongowski R.A., Coran A.G., Harmon C.M. Effect of low fat diet on lipid absorption and fatty-acid transport following bowel resection // Pediatr Surg Int.– 2001. – V. 17. – №. 4. – P. 259-264. DOI: 10.1007/s003830100590

36. Nassir F., Wilson B., Han X., Gross R.W., Abumrad N.A. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine // J Biol Chem. –2007. – V. 282. – №. 27. – P. 19493-19501. DOI: 10.1 074/jbc.M703330200

37. Drover V.A., Ajmal M., Nassir F., Davidson N.O., Nauli A.M., et al. CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood // J Clin Invest.– 2005. – V. 115. – №. 5. – P. 1290-1297. DOI: 10.1172/JCI21514

38. Tran T.T., Poirier H., Clément L., Nassir F., Pelsers M.M., et al. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis // J Biol Chem. – 2011. – V. 286. – №. 28. – P. 25201-25210. DOI: 10.1074/jbc.M111.233551

39. Drover V A., Nguyen D.V., Bastie C.C., Darlington Y.F., Abumrad N.A., et al. CD36 mediates both cellular uptake of very long chain fatty acids and their intestinal absorption in mice // J Biol Chem.– 2008. – V. 283. – №. 19. – P. 13108-13115. DOI: 10.1074/jbc.M708086200

40. Nauli A.M., Nassir F., Zheng S., Yang Q., Lo C.M., et al. CD36 is important for chylomicron formation and secretion and may mediate cholesterol uptake in the proximal intestine // Gastroenterology. – 2006. – V. 131. – №. 4. – P. 1197-1207. DOI: 10.1053/j.gastro.2006.08.012

41. Masuda D., Hirano K., Oku H., Sandoval J.C., Kawase R., et al. Chylomicron remnants are increased in the postprandial state in CD36 deficiency // J Lipid Res.– 2009. – V. 50. – №. 5. – P. 999-1011. DOI: 10.1194/jlr.P700032-JLR200

42. Siddiqi S., Saleem U., Abumrad N.A., Davidson N.O., Storch J., et al. A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER //J Lipid Res.– 2010. – V. 51. – №. 7. – P. 1918-1928. DOI: 10.1194/jlr.M005611

43. Sundaresan S., Shahid R., Riehl T.E., Chandra R., Nassir F., et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin // FASEB J.– 2013. – V. 27. – №. 3. – P. 1191-1202. DOI: 10.1096/fj.12-217703

44. Fridolfsson H.N., Roth D.M., Insel P.A., Patel H.H. Regulation of intracellular signaling and function by caveolin // FASEB J.– 2014. – V. 28. – №. 9. – P. 3823-3831. DOI: 10.1096/fj.14-252320

45. Johannes L., Parton R.G., Bassereau P., Mayor S. Building endocytic pits without clathrin // Nat Rev Mol Cell Biol.– 2015. – V. 16. – №. 5. – P. 311. DOI: 10.1038/nrm3968

46. Pilch P., Meshulam T., Ding S., Liu L. Caveolae and lipid traffi cking in adipocytes // Clin Lipidol.– 2011. – V. 6. – № 1. – P. 49-58. DOI: 10.2217/clp.10.80

47. Otis J.P., Shen M.C., Quinlivan V., Anderson J.L., Farber S.A. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels // Dis Model Mech. – 2017. – V. 10. – №. 3. – P. 283-295. DOI: 10.1242/dmm.027300

48. Pilch P.F., Souto R.P., Liu L., Jedrychowski M.P., Berg E.A., et al. Cellular spelunking: exploring adipocyte caveolae // J Lipid Res.– 2007. – V. 48. – №. 10. – P. 2103-2111. DOI: 10.1194/jlr.R700009-JLR200

49. Matsumura S., Kojidani T., Kamioka Y., Uchida S., Haraguchi T., et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1 // Nat Commun. – 2016. – V. 7. – P. ncomms11858. DOI: 10.1038/ncomms11858

50. Shvets E., Ludwig A., Nichols B.J. News from the caves: update on the structure and function of caveolae // Curr Opin Cell Biol. – 2014. – V. 29. – P. 99-106. DOI: 10.1016/j.ceb.2014.04.011

51. Siddiqi S., Sheth A., Patel F., Barnes M., Mansbach C.M. 2nd. Intestinal caveolin-1 is important for dietary fatty acid absorption // Biochim Biophys Acta. – 2013. – V. 1831. – № 8. – P. 1311-1321. DOI: 10.1016/j.bbalip.2013.05.001

52. Razani B., Combs T.P., Wang X.B., Frank P.G., Park D.S., et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities // J Biol Chem.– 2002. – V. 277. – №. 10. – P. 8635-8647. DOI: 10.1074/jbc.M110970200

53. Ring A., Le Lay S., Pohl J., Verkade P., Stremmel W. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts // Biochim Biophys Acta. – 2006. – V. 1761. – №. 4. – P. 416-423. DOI: 10.1016/j.bbalip.2006.03.016

54. Ehehalt R., Sparla R., Kulaksiz H., Herrmann T., Füllekrug J., Stremmel W. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid raft s) // BMC Cell Biol. – 2008. – V. 9. – №. 1. – P. 45. DOI : 10.1186/1471-2121-9-45

55. Meshulam T., Simard J.R., Wharton J., Hamilton J.A., Pilch P.F. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement // Biochemistry.– 2006. – V. 45. – №. 9. – P. 2882-2893. DOI: 10.1021/bi051999b

56. Кузьменко Н.А., Султанмурадова А.С. Особенности липидного профиля у пациентов с сахарным диабетом 2 типа, осложненным жировым гепатозом // Медицинский вестник Юга России. – 2013. – №. 3. – С. 56-59. DOI:10.21886/2219-8075-2013-3-56-59


Дополнительные файлы

Для цитирования: Каде А.Х., Трофименко А.И., Поляков П.П., Гусарук Л.Р., Ишевская О.П., Шадже Е.А. Молекулярные механизмы абсорбции длинноцепочечных жирных кислот в кишечнике. Медицинский вестник Юга России. 2018;9(3):29-36. https://doi.org/10.21886/2219-8075-2018-9-3-29-36

For citation: Kade A.K., Trofimenko A.I., Polyakov P.P., Gusaruk L.R., Ishevskaia O.P., Shadzhe E.A. Molecular mechanisms of long-chain fatty acids absorption. Medical Herald of the South of Russia. 2018;9(3):29-36. (In Russ.) https://doi.org/10.21886/2219-8075-2018-9-3-29-36

Просмотров: 101

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)