Preview

Medical Herald of the South of Russia

Advanced search

Infl uence of neurogenic chronic pain on indicators of kallikreinkinin system in skin of female mice in dynamics of В16/F10 melanoma development

https://doi.org/10.21886/2219-8075-2018-9-2-51-60

Abstract

Objective: determination of levels of the kallikrein-kinin system (KKS) indicators in cutaneous melanoma and in the skin not associated with tumor in female mice with chronic neurogenic pain in the dynamics of В16/F10 melanoma growth. Materials and methods: the study included 8 weeks old female С57ВL/6 mice weighing 24-26 g (n=132). Th e animals were divided into 4 groups: 64 – В16/F10 melanoma with chronic neurogenic pain (main group), 22 – chronic neurogenic pain without melanoma, 27 – В16/F10 melanoma only (comparison group), 19 – intact mice. KKS parameters were determined by ELISA. Statistical processing of results was performing using the Statistica 10 program and the Wilcoxon test. Results: chronic pain infl uenced the development of transplantable В16/F10 melanoma: tumors in animals of the main group appeared 1 week aft er the transplantation and were bifocal; 100% metastasis to the liver, lungs and to non-typical sites (the heart and uterus). Tumors in mice of the comparison group appeared in 2 weeks, and metastases in 4 weeks. Th e mean survival was 19.17±1.35 days in the main group and 30.25±1.67 days in the comparison group. In the skin of mice of the main group, we observed progressive kininogen consumption, KLK-1 depletion from the second week of the tumor growth, and its accumulation in the tumor with its maximum by the end of week 3. KLK-14 signifi cantly increased in the skin; in the tumor it stabilized aft er an increase in week 1. KKS parameters diff ered signifi cantly in the skin and tumor tissues of mice in compared groups. Conclusions: Chronic neurogenic pain causes a radical reorganization of KKS metabolism in the skin of intact mice: an increase in kininogen and prekallikrein and a decrease in KLK-1. B16/F10 melanoma transplantation with chronic neurogenic pain preserves the increase of prekallikrein in the skin, but increases as well its consumption in tumor tissue simultaneously with the activation of KLK-1 (in the skin until its exhaustion) and KLK-14.

About the Authors

O. I. Kit
Rostov Research Institute of Oncology.
Russian Federation

Oleg I. Kit, corresponding member. RAS, Doctor of Medicine, Professor, General Director.

Rostov-on-Don.



I. M. Kotieva
Rostov State Medical University.

Inga M. Kotieva, PhD, Rostov State Medical University.

Rostov-on-Don.



E. M. Frantsiyants
Rostov Research Institute of Oncology.

Elena M. Frantsiyants, Doctor of Biological Sciences, Professor, Deputy Director General for Science.

Rostov-on-Don.



I. V. Kaplieva
Rostov Research Institute of Oncology.

Irina V. Kaplieva, PhD.

Rostov-on-Don.



L. S. Kozlova
Rostov Research Institute of Oncology.

Larisa S. Kozlova, PhD.

Rostov-on-Don.



V. A. Bandovkina
Rostov Research Institute of Oncology.

Valeria A. Bandovkina, PhD.

Rostov-on-Don.



Yu. A. Pogorelova
Rostov Research Institute of Oncology.

Yulia A. Pogorelova, PhD.

Rostov-on-Don.



N. D. Cheryarina
Rostov Research Institute of Oncology.

Natalya D. Cheryarina, Rostov Research Institute of Oncology.

Rostov-on-Don.



M. V. Blikyan
Rostov State Medical University.

Marina V. Blikyan, PhD.

Rostov-on-Don.



References

1. Kuner R. Central mechanisms of pathological pain.  Nat Med. 2010;16(11):1258-1266. doi: 10.1038/nm.2231

2. Schweinhardt P, Bushnell MC. Pain imaging in health and disease–how far have we come?  J Clin Invest. 2010;120(11):3788-97. doi: 10.1172/JCI43498

3. Falsetta ML, Foster DC, Woeller CF, Pollock SJ, Bonham AD, et al. A Role for Bradykinin Signaling in Chronic Vulvar Pain. J Pain. 2016;17(11):1183-1197. doi: 10,1016/j.jpain.2016.07.007

4. Maria AG, Dillenburg-Pilla P, Reis RI, Floriano EM, TeféSilva C, et al. Host kinin B1 receptor plays a protective role against melanoma progression. Sci Rep. 2016;6:22078. doi: 10.1038/srep22078

5. Luiz AP, Schroeder SD, Rae GA, Calixto JB, Chichorro JG. Th e contribution and interaction of kinin receptors and dinorphin A in the model of neuropathic pain of the trigeminal nerve in mice. Neuroscience. 2015;300:189-200. doi: 10.1016/j.neuroscience.2015.05.015

6. Takeda M, Takehana S, Sekiguchi K, Kubota Y, Shimazu Y. Modulatory Mechanism of Nociceptive Neuronal Activity by Dietary Constituent Resveratrol. Int J Mol Sci. 2016;17(10):pii:E1702. doi: 10.3390/ijms17101702

7. Schmidt Bryan L, Hamamoto Darry T, Simone D, Wilcox George L. Mechanism of pain in cancer. Mol Interv. 2010;10(3):164-178. doi: 10.1124/mi.10.3.7

8. Yang F, Xu Q, Shu B, Tiwari V, He SQ, et al. Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Aβ-fi ber stimulation. Pain. 2016;157(11):25822593. doi: 10.1097/j.pain.0000000000000680

9. Basso L, Altier C. Transient Receptor Potential Channels in neuropathic pain. Curr Opin Pharmacol. 2017;32:9-15. doi: 10.1016/j.coph.2016.10.002

10. Delaunay T, Deschamps L, Haddada M, Walker F, Soosaipillai A, et al. Aberrant expression of kallikrein-related peptidase 7 is correlated with human melanoma aggressiveness by stimulating cell migration and invasion. Mol Oncol. 2017;11(10):1330-1347. doi: 10.1002/1878-0261.12103

11. Pavlopoulou A, Pampalakis G, Michalopoulos I, Sotiropoulou G. Evolutionary History of Tissue Kallikreins. PLoS One. 2010;5(11):e13781. doi: 10.1371/journal.pone.0013781

12. Kryza T,  Silva ML,  Loessner D,  Heuzé-Vourc’h N,  Clements JA. Th e  kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie. 2016;122:283-99. doi: 10.1016/j.biochi.2015.09.002

13. Borgoño CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem. 2007;282:3640-52.

14. Kontos CK, Scorilas A. Kallikrein-related peptidases (KLKs): a gene family of novel cancer biomarkers. Clin Chem Lab Med. 2012;50(11):1877-91. Doi: 10.1515/cclm-2012-0247

15. Paterson CJ, Zambreanu L, Bennett D, McMahon SB. Characteristics and mechanisms of pain caused by bradykinin, in humans using iontophoresis. Pain. 2013;154(6):782-792. doi: 10.1016/j.pain.2013.01.003

16. Koumandou VL, Scorilas A. Evolution of the plasma and tissue kallikreins, and their alternative splicing isoforms. PLoS One. 2013;8(7):e68074

17. Avgeris M, Scorilas A. Kallikrein-related peptidases (KLKs) as emerging therapeutic targets: focus on prostate cancer and skin pathologies. Expert Opin Th er Targets. 2016;20(7):80118. doi: 10.1517/14728222.2016.1147560

18. Ferreira J, Campos MM, Peshero JB, Araujo RK, Bader M, Calixto J. Evidence of the participation of kinins in Freundinduced adjuvant infl ammatory and nociceptive responses in mouse knockout mice of B1 and B2 kin. Neuropharmacology. 2001;41(8):1006-12.

19. Werner MF, Kassuya CA, Ferreira J, Zampronio AR, Calixto JB, Rae GA. Mechanisms controlled by peripheral kinin receptors B (1) and B (2) are involved in neuropathic nociception caused by ligation of the spinal nerve in rats. Neuropharmacology. 2007;53(1):48-57. doi: 10.1016/j.neuropharm.2007.04.013

20. Dillenburg-Pilla P, Maria AG, Reis RI, Floriano EM, Pereira C, et al. Kinin B1 receptor activation enhances melanoma tumor growth and metastasis. PLoS One. 2013;8(5):e64453. doi: 10.1371/journal.pone.0064453

21. Dingemanе KP. B-16 Melanoma Metastasis in Mouse Liver and Lung. Inv. Metast. 1985;(5):50-60.

22. Huang X, Player MP. B1 Bradykinin receptor antagonists as potential therapeutic agents for pain. J Med Chem. 2010;53:5383-5389.

23. Costa R, Motta EM, Dutra RC, Magnavaci MN, Bento AF, et al. Antinociceptive action of kinase receptor antagonists B 1 and B 2 on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol. 2011;164(2b):681-693. doi: 10.1111/j.1476-5381.2011.01408.x

24. Tang SC, Leung JC, Lai KN. Th e kallikrein-kinin system. Contribution of Nephrole. 2011;170:145-55. doi: 10.1159/000325650

25. Balkwill F, Mantovani A. Infl ammation and cancer: back to Virchow?  Lancet.  2001;(17):539-545. doi: 10.1016/S01406736(00)04046-0

26. Hanahan D, Weinberg RA.  Hallmarks of cancer: the next generation.  Cell.  2011;144:646-674. doi: 10.1016/j.cell.2011.02.013

27. Lizama AJ, Andrade Y, Colivoro P, Sarmiento J, Matus CE, et al. Expression and bioregulation of the kallikrein-related peptidases family in the human neutrophil. Innate Immun. 2015;21(6):575-86. doi: 10.1177/1753425914566083

28. Pampalakis G, Sotiropoulou G. Tissue kallikrein proteolytic cascade pathways in normal physiology and cancer. Biochim Biophys Acta. 2007;1776(1):22-31. doi: 10.1016/j.bbcan.2007.06.001

29. Ehrenfeld P, Manso L, Pavicic MF, Matus CE, Borquez C, et al. Bioregulation of kallikrein-related peptidases 6, 10 and 11 by the kinin B1 receptor in breast cancer cells. Anticancer Res. 2014;34(12):6925-38.

30. Menashi S,  Fridman R,  Desrivieres S,  Lu H,  Legrand Y, Soria C. Regulation of 92-kDa gelatinase B activity in the extracellular matrix by tissue kallikrein. Ann N Y Acad Sci. 1994;732(6):466-8


Review

For citations:


Kit O.I., Kotieva I.M., Frantsiyants E.M., Kaplieva I.V., Kozlova L.S., Bandovkina V.A., Pogorelova Yu.A., Cheryarina N.D., Blikyan M.V. Infl uence of neurogenic chronic pain on indicators of kallikreinkinin system in skin of female mice in dynamics of В16/F10 melanoma development. Medical Herald of the South of Russia. 2018;9(2):51-60. (In Russ.) https://doi.org/10.21886/2219-8075-2018-9-2-51-60

Views: 1022


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)