MECHANISMS OF FORMATION OF KIDNEY FIBROSIS BASED ON MICROVASCULAR LESIONS
https://doi.org/10.21886/2219-8075-2017-1-21-27
Abstract
The review deals with the description of the mechanisms involved in the formation of kidney fibrosis. Presented molecular factors activation of the pathological process, signaling pathways, competent cells with synthetic provospolitelnyh mediators, the role of epithelial-mesenchymal transition in the development and progression of renal fibrosis. Demonstrated evidence of the importance of the remodeling of the renal arteries of small diameter in the development and progression of renal fibrosis tissue. Sources of information on topics Review article full disclosure, a presentation of the current views on the study of this problem, use the database PubMed citations, RISC, Scopus, Web- Mathematical Sciences, Google Scholar, Copernicus index, Ulrich Periodicals Directory.
About the Author
E. S. LevitskayaRussian Federation
29 Nakhichevanskiy st., Rostov-on-Don, 344022 Russia
Competing Interests: Конфликта интересов нет
References
1.
2. Neovius M, Jacobson SH, Eriksson JK, Elinder CG, Hylander B. Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study. BMJ Open 2014;4:e00425. doi: 10.1136/bmjopen-2013-004251
3. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684-696. doi: 10.1038/nrneph.2011.149
4. Farris AB, Colvin RB. Renal Interstitial Fibrosis: Mechanisms and Evaluation In: Current Opinion in Nephrology and Hypertension. CurrOpinNephrolHypertens. 2012;21(3):289- 300. doi: 10.1097/MNH.0b013e3283521cfa
5. Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. Journal of the American Society of Nephrology: JASN. 2010;21(11):1819-1834. doi: 10.1681/ASN.2010080793
6. Duffield JS. Cellular and molecular mechanisms in kidney fibrosis. J Clin Invest. 2014;124(6):2299-2306. doi: 10.1172/JCI72267
7. Genoves F, ManresaAA, LeemingDJ, Karsdal MA, BoorP. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis& Tissue Repair. 2014;7(1):4. doi: 10.1186/1755-1536-7-4
8. Savosh VV, Letkovskaja TA, Cherstvyj ED, Sukalo AV. Cellular mechanisms of tubulointerstitial changes in primary glomerulopathy. Medical Journal. 2007;4:98-100. (In Russ).
9. Papasotiriou M, Genovese F, Klinkhammer BM, Kunter U, Nielsen SH, Karsdal MA et al. Serum and urine markers of collagen degradation reflect renal fibrosis in experimental kidney diseases. Nephrol Dial Transplant. 2015;30(7):1112–1121. doi: 10.1093/ndt/gfv063
10. Dussaule JC, Guerrot D, Huby AC, Chadjichristos C, Shweke N, Boffa JJ et al. The role of cell plasticity in progression and reversal of renal fibrosis. Int J ExpPathol. 2011;92(3):151-7. doi:10.1111/j.1365-2613.2011.00760.x
11. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010;6(11):643-56. doi: 10.1038/nrneph.2010.120
12. Tapmeier TT, Fearn A, Brown K, Chowdhury P, Sacks SH, Sheerin NS et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney international. 2010;78(4):351–362. doi: 10.1038/ki.2010.177
13. Khan F, Sar A, Gonul I, Benediktsson H, Doulla J, Yilmaz S et al. Graft inflammation and histologic indicators of kidney chronic allograft failure: low-expressing interleukin- 10 genotypes cannot be ignored. Transplantation. 2010;90(6):630-638. doi: 10.1097/TP.0b013e3181ea391e
14. Semedo P, Donizetti-Oliveira C, Burgos-Silva M, Cenedeze MA, Avancini Costa Malheiros DM, Pacheco-Silva A et al. Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest. 2010;90(5):685-95. doi: 10.1038/labinvest.2010.45
15. Kitching AR. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transplant. 2014;29(12):2185-2193. doi: 10.1093/ndt/gfu076
16. Snelgrove SL, Kausman JY, Lo C, Lo C, Ooi JD, Coates PT et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am J Pathol. 2012;180(1):91-103. doi: 10.1016/j.ajpath.2011.09.039
17. Baba A, Tachi M, Ejima Y, Endo Y, Toyama H, Saito K et al. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure. NEPHROLOGY. 2017;22(2):159-167. doi:10.1111/nep.12733
18. Zhao J, WangL, Cao A, Jiang M, Chen X, Peng W. Renal Tubulointerstitial Fibrosis: A Review in Animal Models. Journal of Integrative Nephrology &Andrology. 2015;2(3):75- 80. doi: 10.4103/2225-1243.161428
19. López-Novoa JM, Rodríguez-Peña AB, Ortiz A, Martínez-Salgado C, LópezHernández FJ. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications. JTranslMed. 2011;9:13. doi: 10.1186/1479-5876-9-13
20. López-Marín L, Chávez Y, García XA, Flores WM, GarcíaYM, Herrera R et al. Histopathology of Chronic Kidney Disease of Unknown Etiology in Salvadoran Agricultural Communities. MEDICC Review. 2014;16(2):49-54.
21. Batyushin MM. Sulodexide. Nephroprotective properties and horizons for use in nephrology. Medical Council. 2015;(7):68-71. (In Russ.) doi:10.21518/2079-701X-2015-7-68-71
22. Tanaka Y, Kume S, Araki S, Isshiki K, Chin-Kanasaki M, Sakaguchi M et al. Fenofibrate, a PPAR agonist, has renoprotective effects in mice by enhancing renal lipolysis. Kidney Int. 2011;79(8):871-82. doi: 10.1038/ki.2010.530
23. Cho KH, Kim HJ, Kamanna VS, Vaziri ND. Niacin improves renal lipid metabolism and slows progression in chronic kidney disease. BiochimBiophysActa. 2010;1800(1):6-15. doi: 10.1016/j.bbagen.2009.10.009
24. Ortiz A, Ucero AC, Egido J. Unravelling fibrosis: two newcomers and an old foe. Nephrol Dial Transplant. 2010;25(11):3492-5. doi: 10.1093/ndt/gfq518
25. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4(1):4. doi: 10.1186/1755-1536-4-4
26. Loeffler I, Wolf G. Transforming growth factor- and the progression of renal disease. Nephrol. Dial. Transplant. 2014;(1):i37-i45. doi: 10.1093/ndt/gft267
27. Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S et al. TGF- beta and fibrosis in different organs– molecularpathway imprints. BiochimBiophysActa. 2009;1792(8):746-56. doi: 10.1016/j.bbadis.2009.06.004.
28. Lee HS. Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease. Cell Tissue Res. 2012;347(1):129-40. doi: 10.1007/s00441-011-1169-7
29. Ronco C. Cardiorenal syndromes: definition and classification. ContribNephrol. 2010;164:33-38. doi: 10.1159/000313718
30. Leask A. Targeting the jagged/notch pathway: a new treatment for fibrosis? J Cell Commun Signal. 2010;4(4):197-8. doi: 10.1007/s12079-010-0101-3
31. Sharma S, Sirin Y, Susztak K. The story of Notch and chronic kidney disease. CurrOpinNephrolHypertens. 2011;20(1):56-61. doi: 10.1097/MNH.0b013e3283414c88
32. Maezawa Y, Takemoto M, Yokote K. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. J Diabetes Investig. 2015;6(1):3- 15. doi: 10.1111/jdi.12255
33. Sato C, Zhao G, Ilagan MX. An Overview of Notch Signaling in Adult Tissue Renewal and Maintenance. CurrAlzheimerRes. 2012;9(2):227–240.
34. Ables JL., Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci. 2011;12(5):269–283. doi: 10.1038/nrn3024
35. Sirin Y, Susztak K. Notch in the kidney: development and disease. J Pathol. 2012;226(2):394-403. doi: 10.1002/path.2967
36. Niranjan T, Bielesz B, Gruenwald A, Ponda MP, Kopp JB, Thomas DB et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat Med. 2008;14(3):290-8. doi: 10.1038/nm1731
37. Xu Y, Xue S, Zhou J, Voorhees JJ, Fisher GJ. Notch and TGF-β pathways cooperatively regulate receptor protein tyrosine phosphatase-κ¯ (PTPRK) gene expression in human primary keratinocytes. MolBiol Cell. 2015;26(6):1199-1206. doi: 10.1091/mbc.E14-12-1591
38. Batiushin MM, Gadaborsheva HZ. Vascular adhesion protein-1 (VAP-1) and its role in modeling inflammation and fibrosis. Nephrology vector. Nephrology. 2015;5:23-27. (In Russ).
39. Jen KY, Haragsim L, Laszik ZG. Kidney microvasculature in health and disease. ContribNephrol. 2011;169:51-72. doi: 10.1159/000313945
40. Levitskaya ES, Batiushin MM, Pasechnik DG, Asrumjan JeG. Remodeling of the renal arteries - the initiator and target cardio-renal continuum. Cardiovascular therapy and prevention. 2015;4(1): 0-96. (In Russ). doi: 10.15829/1728-8800-2015-1-90-96
41. Levitskaya ES, Batiushin MM, Pasechnik DG, Antipova NV. Predicting renal tissue remodeling based on structural changes of the renal arteries of small diameter. Nephrology. 2016;20(5):55-61.(In Russ).
42. Tracy RE. Renal Vasculature in Essential Hypertension: A Review of Some Contrarian Evidence. ContribNephrol. 2011;169:327-336. doi: 10.1159/000314908
43. Hanamura K, Tojo A, Kinugasa S, Asaba K, Fujita T. The Resistive Index Is a Marker of Renal Function, Pathology, Prognosis, and Responsiveness to Steroid Therapy in Chronic Kidney Disease Patients. International Journal of Nephrology. 2012;2012:139565. doi: 10.1155/2012/139565
44. Eirin A, Lerman LO. Darkness at the End of the Tunnel: Poststenotic Kidney Injury. Physiology (Bethesda). 2013;28(4):245-253. doi: 10.1152/physiol.00010.2013
Review
For citations:
Levitskaya E.S. MECHANISMS OF FORMATION OF KIDNEY FIBROSIS BASED ON MICROVASCULAR LESIONS. Medical Herald of the South of Russia. 2017;(1):21-27. (In Russ.) https://doi.org/10.21886/2219-8075-2017-1-21-27