Preview

Medical Herald of the South of Russia

Advanced search

VITAMIN D REGULATION OF BONE METABOLISM

https://doi.org/10.21886/2219-8075-2017-1-12-20

Abstract

The main vitamin D (1,25(OH)2D) function lies in maintaining of calcium and phosphates normal concentrations in a blood plasma that is necessary for adequate bone tissue mineralization and skillet formation. Now there’s no doubt that vitamin D immediately participates in the bone tissue metabolism, directly influencing through VDR receptors located on cells: chondrocytes, osteoblasts, osteocytes and osteoclasts. At that, mechanisms of calcium and phosphorus intestinal absorption stimulation and immediate vitamin D influence on bone cells are significant and complementary in the full-fledged bone tissue metabolism regulation process.

About the Authors

E. A. Maylyan
Donetsk National Medical University named after M. Gorky
Ukraine
16 Illicha Ave., Donetsk 283003, DPR


N. A. Rheznichenko
Donetsk National Medical University named after M. Gorky
Ukraine
16 Illicha Ave., Donetsk 283003, DPR


D. E. Maylyan
Donetsk National Medical University named after M. Gorky
Ukraine
16 Illicha Ave., Donetsk 283003, DPR


References

1. Gastroyеnterologijа i gepatologijа: diagnostika i lechenie: Zerwekh JE. Blood biomarkers of vitamin D status. Am. J. Clin. Nutr. 2008;87(4):1087–1091.

2. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am. J. Clin. Nutr. 2008;87(4):1080–1086.

3. Holick MF. Vitamin D: evolutionary, physiological and health perspectives. Curr. Drug Targets. 2011;12(1):4–18.

4. Wacker M, Holick MF. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013;5(1):111–148. doi: 10.3390/nu5010111

5. Povoroznyuk VV, Reznichenko NA, Maylyan EA. Extraskeletal effects of vitamin D. Pain. Joints. Spine. 2014;1-2:19–25. (In Russ)

6. Maltsev SV, Rylova NV. Vitamin D and immunity. Practical medicine. 2015;1:114–120. (In Russ).

7. Povoroznyuk VV, Snezhitskiy VA, Yankouskaya LV, Maylyan EA, Reznichenko NA, Maylyan DE. Extraskeletal effects of vitamin D: role in the pathogenesis of cardiovascular diseases. Journal of the Grodno State Medical University. 2015;2:6–14. (In Russ)

8. Drapkina OM, Shepel RN. Pleiotropic effects of vitamin D. Ration. Pharmacother. Cardiol. 2016;12(2):227-233. (In Russ). doi: 10.20996/1819-6446-2016-12-2-227-233

9. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF et al. Vitamin D and Human Health: Lessons from Vitamin D Receptor Null Mice. Endocrine Reviews. 2008;29(6):726–776. doi: 10.1210/er.2008-0004

10. Wolf G. The discovery of vitamin D: the contribution of Adolf Windaus. J. Nutr. 2004;134(6):1299–1302.

11. Tang JY, Fu T, Lau C, Oh DH, Bikle DD, Asgari MM. Vitamin D in cutaneous carcinogenesis: Part I. J. Am. Acad. Dermatol. 2012;67(5):803–816. doi: 10.1016/j.jaad.2012.05.044

12. Maltsev SV, Mansurova GSh. Metabolism of vitamin D and means of its main functions’ implementation. Practical medicine. 2014;9:12–18. (In Russ).

13. Bikle DD, Gee E, Halloran B, Haddad JG. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J. Clin. Invest. 1984;74:1966–1971.

14. Bikle DD. Vitamin D and bone. Curr. Osteoporos. Rep. 2012;10(2):151–159. doi: 10.1007/s11914-012-0098-z

15. Holick MF. Vitamin D Deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.

16. Razzaque MS. The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 2009;5(11):611– 619. doi: 10.1038/nrendo.2009.196.

17. Van Driel M, Koedam M, Buurman CJ, Hewison M, Chiba H, Uitterlinden AG et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J. 2006;20(13):2417–2419.

18. Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino AC et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone. 2007;40(6):1517–1528.

19. Binkley N, Ramamurthy R, Krueger D. Low vitamin D status: definition, prevalence, consequences, and correction. Endocrinol. Metab. Clin. North. Am. 2010;39(2):287–301. doi: 10.1016/j.ecl.2010.02.008.

20. Blomberg JM. Vitamin D metabolism, sex hormones, and male reproductive function. Reproduction. 2012;144(2):135–152. doi: 10.1530/REP-12-0064

21. Zakharova IN, Vasilyeva SV, Dmitriyeva YuA, Mozzhukhina МV, Yevseyeva YeA. Treatment of vitamin D deficiency. Effective Pharmacotherapy. Pediatrics. 2014;1:38–44. (In Russ).

22. Tripkovic L, Lambert H, Hart K, Smith CP, Bucca G, Penson S et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am. J. Clin. Nutr. 2012;95(6):1357–1364. doi: 10.3945/ajcn.111.031070

23. Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit. Rev. Clin. Lab. Sci. 2010;47(4):181–195. doi: 10.3109/10408363.2010.536429

24. Xue Y, Fleet JC. Intestinal vitamin D receptor is required for normal calcium and bone metabolism in mice. Gastroenterology. 2009;136(4):1317–1327. doi: 10.1053/j.gastro.2008.12.051

25. Nordin BE, Need AG, Morris HA, O’Loughlin PD, Horowitz M. Effect of age on calcium absorption in postmenopausal women. Am. J. Clin. Nutr. 2004;80(4):998–1002.

26. Heaney RP, Dowell MS, Hale CA, Bendich A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J. Am. Coll. Nutr. 2003;22(2):142–146.

27. Aloia JF, Chen DG, Yeh JK, Chen H. Serum vitamin D metabolites and intestinal calcium absorption efficiency in women. Am. J. Clin. Nutr. 2010;92(4):835–840. doi: 10.3945/ajcn.2010.29553

28. Ten Bolscher M, Netelenbos JC, Barto R, Van Buuren LM, Van Der Vijgh WJ. Estrogen regulation of intestinal calcium absorption in the intact and ovariectomized adult rat. J. Bone Miner. Res. 1999;14(7):1197–1202.

29. Van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285(1):78–85.

30. Boivin G, Mesguich P, Pike JW, Bouillon R, Meunier PJ, Haussler MR et al. Ultrastructural immunocytochemical localization of endogenous 1,25-dihydroxyvitamin D3 and its receptors in osteoblasts and osteocytes from neonatal mouse and rat calvaria. Bone Miner. 1987;3(2):125–136.

31. Biswas P, Zanello LP. 1alpha,25(OH)(2) vitamin D(3) induction of ATP secretion in osteoblasts. J. Bone Miner. Res. 2009;24(8):1450-1460. doi: 10.1359/jbmr.090306

32. Min B. Effects of Vitamin D on Blood Pressure and Endothelial Function. Korean J. Physiol. Pharmacol. 2013;17(5):385–392.

33. Haussler MR, Haussler CA, Jurutka PW, Thompson PD, Hsieh JC, Remus LS et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J. Endocrinol. 1997;154(Suppl):57–73.

34. Whitfield GK, Hsieh JC, Jurutka PW, Selznick SH, Haussler CA, MacDonald PN et al. Genomic actions of 1,25-dihydroxyvitamin D3. J. Nutr. 1995;125(6 Suppl):1690–1694.

35. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev. Endocr. Metab. Disord. 2012;13(1):57–69. doi: 10.1007/s11154-011-9199-8

36. Suda T, Takahashi N, Abe E. Role of vitamin D in bone resorption. J. Cell. Biochem. 1992;49(1):53–58.

37. Nordin BE. Evolution of the calcium paradigm: the relation between vitamin D, serum calcium and calcium absorption. Nutrients. 2010;2(9):997–1004. doi: 10.3390/nu2090997.


Review

For citations:


Maylyan E.A., Rheznichenko N.A., Maylyan D.E. VITAMIN D REGULATION OF BONE METABOLISM. Medical Herald of the South of Russia. 2017;(1):12-20. (In Russ.) https://doi.org/10.21886/2219-8075-2017-1-12-20

Views: 4888


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)