Preview

Medical Herald of the South of Russia

Advanced search

Myelodysplastic syndrome: epidemiology, diagnostics and epigenetic disorders

https://doi.org/10.21886/2219-8075-2022-13-2-179-190

Abstract

Myelodysplastic syndrome is a group of myeloid neoplasms that arise from the action of damaging factors on hematopoietic stem cells, which are based on somatic mutations, which leads to the formation of clonal hematopoiesis. we know from epidemiological data that old age, male gender, and smoking are in themselves independent risk factors for myelodysplastic syndrome. These factors can potentiate the occurrence of mutations in the genome. In young people and children, myelodysplastic syndrome is a direct consequence of genetic abnormalities. There is an assumption that epigenetic regulatory genes are subject to frequent mutations. The chromatin of malignant cells acquires epigenetic abnormalities affecting tumor resistance, which explains their response to treatment with epigenetic drugs in combination with other therapies The appearance of new mutations potentiates hematopoiesis, which is accompanied by the shutdown of apoptosis and the transformation of myelodysplastic syndrome into acute myeloid leukemia. It is suggested that mutations in the genes of epigenetic regulators have functional effects on pluripotent hemopoietic stem cells. Epigenetic profiling of patients had a significant impact on understanding the molecular basis of etiology, pathogenesis, and patterns of transformation of myelodysplastic syndrome into acute myeloid leukemia, but it is not known which genes are the most clinically significant for their final use in laboratory diagnostics and targeted hypomethylating therapy. Despite the multitude of mutations in epigenetic regulators in myelodysplastic syndrome, the creation of prognostic models based on them requires a detailed study that includes not only analysis of the frequency of such mutations, but also the establishment of a relationship with clinically significant outcomes. The aim of this review is to study the prevalence of the mutational status of epigenetic regulation in patients with myelodysplastic syndrome.

About the Authors

P. V. Lipilkin
Rostov State Medical University; Don State Technical University
Russian Federation

Pavel V. Lipilkin, assistant of the Department of Biology and general pathology 

Rostov-on-Don



E. D. Kulaeva
Southern Federal University, Research Institute of Biology
Russian Federation

Elizaveta D. Kulaeva, research assistant, Department of Genetics, Biology of development and genome organisation laboratory 

Rostov-on-Don



A. N. Zeltser
Rostov State Medical University
Russian Federation

Anastasia N. Zeltser, M.D., laboratory geneticist of the Laboratory of medical genetics 

Rostov-on-Don



S. V. Mordanov
Rostov State Medical University
Russian Federation

Sergey V. Mordanov, M.D., assistant of the Department of Hematology and Transfusiology with a Сourse of Сlinical Laboratory Diagnostics, Genetics and Laboratory Genetics 

Rostov-on-Don



Yu. V. Shatokhin
Rostov State Medical University
Russian Federation

Yuri V. Shatokhin, MD, professor of the Department of Hematology and Transfusiology with courses in clinical laboratory diagnostics, genetics and laboratory genetics of faculty of professional development and training 

Rostov-on-Don



References

1. Sweeney MR, Applebaum KM, Arem H, Braffett BH, Poynter jN, Robien K. Medical Conditions and Modifiable Risk Factors for Myelodysplastic Syndrome: A Systematic Review. Cancer Epidemiol Biomarkers Prev. 2019;28(9):1502-1517. DOI: 10.1158/1055-9965.EPI-19-0106.

2. Rydén j, Edgren G, Karimi M, walldin G, Tobiasson M, et al. Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia. 2019;33(2):522-527. DOI: 10.1038/s41375-018-0256-0.

3. van Spronsen MF, westers TM, Lissenberg-witte BI, wondergem M, Ossenkoppele Gj, van de Loosdrecht AA. The non-erythroid myeloblast count rule in myelodysplastic syndromes: fruitful or futile? Haematologica. 2019;104(12):e547-e550. DOI: 10.3324/haematol.2018.212563.

4. Ma x. Epidemiology of myelodysplastic syndromes. Am J Med. 2012;125(7 Suppl):S2-5. DOI: 10.1016/j.amjmed.2012.04.014.

5. Ma x, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109(8):1536-42. DOI: 10.1002/cncr.22570.

6. Aul C, Giagounidis A, Germing U. Epidemiological features of myelodysplastic syndromes: results from regional cancer surveys and hospital-based statistics. Int J Hematol. 2001;73(4):405-410. DOI: 10.1007/BF02994001.

7. Swerdlow S.H., Campo E., Harris N.L. WHO Classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon. 2008

8. Germing U, Strupp C, Kündgen A, Bowen D, Aul C, Haas R, Gattermann N. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica. 2004;89(8):905-10. PMID: 15339672.

9. Strom SS, Vélez-Bravo V, Estey EH. Epidemiology of myelodysplastic syndromes. Semin Hematol. 2008;45(1):8-13. DOI: 10.1053/j.seminhematol.2007.10.003.

10. Bejar R, Steensma DP. Recent developments in myelodysplastic syndromes. Blood. 2014;124(18):2793-803. DOI: 10.1182/ blood-2014-04-522136.

11. Rollison DE, Howlader N, Smith MT, Strom SS, Merritt wD, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112(1):45-52. DOI: 10.1182/blood-2008-01-134858.

12. Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664-70. DOI: 10.1182/blood-2004-09-3426.

13. Hayes RB, Yin SN, Dosemeci M, Li GL, wacholder S, et al. Mortality among benzene-exposed workers in China. Environ Health Perspect. 1996;104 Suppl 6(Suppl 6):1349-52. DOI: 10.1289/ehp.961041349.

14. Nisse C, Lorthois C, Dorp V, Eloy E, Haguenoer jM, Fenaux P. Exposure to occupational and environmental factors in myelodysplastic syndromes. Preliminary results of a case-control study. Leukemia. 1995;9(4):693-9. PMID: 7723405.

15. Strom SS, Gu Y, Gruschkus SK, Pierce SA, Estey EH. Risk factors of myelodysplastic syndromes: a case-control study. Leukemia. 2005;19(11):1912-8. DOI: 10.1038/sj.leu.2403945.

16. Goldberg H, Lusk E, Moore j, Nowell PC, Besa EC. Survey of exposure to genotoxic agents in primary myelodysplastic syndrome: correlation with chromosome patterns and data on patients without hematological disease. Cancer Res. 1990;50(21):6876-81. PMID: 2208156.

17. Brownson RC, Novotny TE, Perry MC. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Med. 1993;153(4):469-75. PMID: 8435026.

18. Björk j, Albin M, Mauritzson N, Strömberg U, johansson B, Hagmar L. Smoking and myelodysplastic syndromes. Epidemiology. 2000;11(3):285-91. DOI: 10.1097/00001648-200005000-00010.

19. Nisse C, Haguenoer jM, Grandbastien B, Preudhomme C, Fontaine B, et al. Occupational and environmental risk factors of the myelodysplastic syndromes in the North of France. Br J Haematol. 2001;112(4):927-35. DOI: 10.1046/j.1365-2141.2001.02645.x.

20. Du Y, Fryzek j, Sekeres MA, Taioli E. Smoking and alcohol intake as risk factors for myelodysplastic syndromes (MDS). Leuk Res. 2010;34(1):1-5. DOI: 10.1016/j.leukres.2009.08.006.

21. Gao Q, Horwitz M, Roulston D, Hagos F, Zhao N, et al. Susceptibility gene for familial acute myeloid leukemia associated with loss of 5q and/or 7q is not localized on the commonly deleted portion of 5q. Genes Chromosomes Cancer. 2000;28(2):164-72. PMID: 10825001.

22. Buijs A, Poddighe P, van wijk R, van Solinge w, Borst E, et al. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood. 2001;98(9):2856-8. DOI: 10.1182/blood.v98.9.2856.

23. Lv L, Lin G, Gao x, wu C, Dai j, et al. Case-control study of risk factors of myelodysplastic syndromes according to world Health Organization classification in a Chinese population. Am J Hematol. 2011;86(2):163-9. DOI: 10.1002/ajh.21941.

24. Kumar B, Chandran B. KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics. Viruses. 2016;8(11):305. DOI: 10.3390/v8110305.

25. Copley GB, Schnatter AR, Armstrong Tw, Irons RD, Chen M, et al. Hospital-Based Case-Control Study of MDS Subtypes and Benzene Exposure in Shanghai. J Occup Environ Med. 2017;59(4):349-355. DOI: 10.1097/jOM.0000000000000952.

26. Qu S, xu Z, Zhang Y, Qin T, Zhang T, et al. Impacts of cytogenetic categories in the Revised International Prognostic Scoring System on the prognosis of primary myelodysplastic syndromes: results of a single-center study. Leuk Lymphoma. 2012;53(5):940-6. DOI: 10.3109/10428194.2011.634049.

27. Matsuda A, Germing U, jinnai I, Misumi M, Kuendgen A, et al. Difference in clinical features between japanese and German patients with refractory anemia in myelodysplastic syndromes. Blood. 2005;106(8):2633-40. DOI: 10.1182/blood-2005-01-0040.

28. Patnaik MM, Hanson CA, Sulai NH, Hodnefield jM, Knudson RA, et al. Prognostic irrelevance of ring sideroblast percentage in world Health Organization-defined myelodysplastic syndromes without excess blasts. Blood. 2012;119(24):5674-7. DOI: 10.1182/blood-2012-03-415356.

29. Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016;128(16):2096-2097. DOI: 10.1182/blood-2016-07-728766.

30. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Invest. 2009;39(7):548-53. DOI: 10.1111/j.1365-2362.2009.02151.x.

31. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-88. Erratum in: Blood 1998;91(3):1100. PMID: 9058730.

32. Greenberg PL, Tuechler H, Schanz j, Sanz G, Garcia-Manero G, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-65. DOI: 10.1182/blood-2012-03-420489.

33. Breems DA, Van Putten wL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791-7. DOI: 10.1200/jCO.2008.16.0259.

34. Schanz j, Tüchler H, Solé F, Mallo M, Luño E, et al. Monosomal karyotype in MDS: explaining the poor prognosis? Leukemia. 2013;27(10):1988-95. DOI: 10.1038/leu.2013.187.

35. Deeg Hj, Scott BL, Fang M, Shulman HM, Gyurkocza B, et al. Five-group cytogenetic risk classification, monosomal karyotype, and outcome after hematopoietic cell transplantation for MDS or acute leukemia evolving from MDS. Blood. 2012;120(7):1398-408. DOI: 10.1182/blood-2012-04-423046.

36. de witte T, Bowen D, Robin M, Malcovati L, Niederwieser D, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. Blood. 2017;129(13):1753-1762. DOI: 10.1182/blood-2016-06-724500.

37. Lamarque M, Raynaud S, Itzykson R, Thepot S, Quesnel B, et al. The revised IPSS is a powerful tool to evaluate the outcome of MDS patients treated with azacitidine: the GFM experience. Blood. 2012;120(25):5084-5. DOI: 10.1182/blood-2012-09-453555. Erratum in: Blood. 2014;123(26):4152. PMID: 23243156.

38. Gangat N, Patnaik MM, Tefferi A. Myelodysplastic syndromes: Contemporary review and how we treat. Am J Hematol. 2016;91(1):76-89. DOI: 10.1002/ajh.24253.

39. Malcovati L, Della Porta MG, Strupp C, Ambaglio I, Kuendgen A, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the wHO classification-based Prognostic Scoring System (wPSS). Haematologica. 2011;96(10):1433-40. DOI: 10.3324/haematol.2011.044602.

40. Della Porta MG, Tuechler H, Malcovati L, Schanz j, Sanz G, et al. Validation of wHO classification-based Prognostic Scoring System (wPSS) for myelodysplastic syndromes and comparison with the revised International Prognostic Scoring System (IPSS-R). A study of the International working Group for Prognosis in Myelodysplasia (IwG-PM). Leukemia. 2015;29(7):1502-13. DOI: 10.1038/leu.2015.55.

41. Garcia-Manero G, Shan j, Faderl S, Cortes j, Ravandi F, et al. A prognostic score for patients with lower risk myelodysplastic syndrome. Leukemia. 2008;22(3):538-43. DOI: 10.1038/sj.leu.2405070.

42. Kantarjian H, O'Brien S, Ravandi F, Cortes j, Shan j, et al. Proposal for a new risk model in myelodysplastic syndrome that accounts for events not considered in the original International Prognostic Scoring System. Cancer. 2008;113(6):1351-61. DOI: 10.1002/cncr.23697.

43. Valcárcel D, Ademà V, Solé F, Ortega M, Nomdedeu B, et al. Complex, not monosomal, karyotype is the cytogenetic marker of poorest prognosis in patients with primary myelodysplastic syndrome. J Clin Oncol. 2013;31(7):916-22. DOI: 10.1200/jCO.2012.41.6073.

44. Pfeilstöcker M, Tuechler H, Sanz G, Schanz j, Garcia-Manero G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902-10. DOI: 10.1182/blood-2016-02-700054.

45. Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, jädersten M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233-41. DOI: 10.1182/blood-2015-03-633537.

46. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27. DOI: 10.1016/j.cell.2012.06.013.

47. Tiguntsev V.V., Ivanova S.A., Serebrov V.Yu., Buhareva M.B. Small noncoding RNA as perspective biomarkers: biogenesis and therapeutic stratigies.Bulletin of Siberian Medicine.2016;15(2):112- 126. (In Russ.) DOI: 10.20538/1682-0363-2016-2-112-126

48. Savchenko V.G., Parovichnikova E.N., Kohno A.V., Semochkin S.V., Afanas'ev B.V., et al. National clinical guidelines for the diagnosis and treatment of myelodysplastic syndromes in adults. Russian journal of hematology and transfusiology. 2016:61(1-S4):1- 32. (In Russ.). DOI: 10.18821/0234-5730-2016-61-1(Пpил.4)

49. Audia jE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. DOI: 10.1101/cshperspect.a019521.

50. Pujadas E, Feinberg AP. Regulated noise in the epigenetic landscape of development and disease. Cell. 2012;148(6):1123-31. DOI: 10.1016/j.cell.2012.02.045.

51. jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview. Adv Biol Regul. 2015;58:28-37. DOI: 10.1016/j.jbior.2014.11.002.

52. Berenstein R, Blau Iw, Kar A, Cay R, Sindram A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. DOI: 10.1186/1756-9966-33-44.

53. Ewalt M, Galili NG, Mumtaz M, Churchill M, Rivera S, et al. DNMT3a mutations in high-risk myelodysplastic syndrome parallel those found in acute myeloid leukemia. Blood Cancer J. 2011;1(3):e9. DOI: 10.1038/bcj.2011.7.

54. Lin ME, Hou HA, Tsai CH, wu Sj, Kuo YY, et al. Dynamics of DNMT3A mutation and prognostic relevance in patients with primary myelodysplastic syndrome. Clin Epigenetics. 2018;10:42. DOI: 10.1186/s13148-018-0476-1.

55. Liang S, Zhou x, Pan H, Yang Y, Shi L, wang L. Prognostic value of DNMT3A mutations in myelodysplastic syndromes: a meta-analysis. Hematology. 2019;24(1):613-622. DOI: 10.1080/16078454.2019.1657613.

56. Emperle M, Adam S, Kunert S, Dukatz M, Baude A, et al. Mutations of R882 change flanking sequence preferences of the DNA methyltransferase DNMT3A and cellular methylation patterns. Nucleic Acids Res. 2019;47(21):11355-11367. DOI: 10.1093/nar/gkz911.

57. ward PS, Patel j, wise DR, Abdel-wahab O, Bennett BD, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alphaketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17(3):225- 34. DOI: 10.1016/j.ccr.2010.01.020.

58. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz Gj, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722-731. DOI: 10.1182/blood-2017-04-779405.

59. Busque L, Patel jP, Figueroa ME, Vasanthakumar A, Provost S, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179-81. DOI: 10.1038/ng.2413.

60. Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-12. DOI: 10.1182/blood-2014-06-582809.

61. Bejar R, Stevenson KE, Caughey BA, Abdel-wahab O, Steensma DP, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376-82. DOI: 10.1200/jCO.2011.40.7379.

62. Sinclair DA, Milne TA, Hodgson jw, Shellard j, Salinas CA, et al. The Additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes. Development. 1998;125(7):1207-16. DOI: 10.1242/dev.125.7.1207.

63. Fisher CL, Randazzo F, Humphries RK, Brock Hw. Characterization of Asxl1, a murine homolog of Additional sex combs, and analysis of the Asx-like gene family. Gene. 2006;369:109-18. DOI: 10.1016/j.gene.2005.10.033.

64. Asada S, Fujino T, Goyama S, Kitamura T. The role of ASxL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511-2523. DOI: 10.1007/s00018-019-03084-7.

65. Traina F, Visconte V, Elson P, Tabarroki A, jankowska AM, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78-87. DOI: 10.1038/leu.2013.269.

66. Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern w, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASxL1 and CBL mutations. Leukemia. 2013;27(9):1852-60. DOI: 10.1038/leu.2013.133.

67. Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45(8):942-6. DOI: 10.1038/ng.2696.

68. Lee Ej, Podoltsev N, Gore SD, Zeidan AM. The evolving field of prognostication and risk stratification in MDS: Recent developments and future directions. Blood Rev. 2016;30(1):1-10. DOI: 10.1016/j.blre.2015.06.004.

69. Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci Mj, Birnbaum D. Mutations in ASxL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5:12. DOI: 10.1186/1756-8722-5-12.

70. Abdel-wahab O, Pardanani A, Patel j, wadleigh M, Lasho T, et al. Concomitant analysis of EZH2 and ASxL1 mutations in myelofibrosis, chronic myelomonocytic leukemia and blast-phase myeloproliferative neoplasms. Leukemia. 2011;25(7):1200-2. DOI: 10.1038/leu.2011.58.

71. Thieme S, Gyárfás T, Richter C, Özhan G, Fu j, et al. The histone demethylase UTx regulates stem cell migration and hematopoiesis. Blood. 2013;121(13):2462-73. DOI: 10.1182/blood-2012-08-452003.

72. Steensma DP, Bejar R, jaiswal S, Lindsley RC, Sekeres MA, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9-16. DOI: 10.1182/blood-2015-03-631747.

73. jaiswal S, Fontanillas P, Flannick j, Manning A, Grauman PV, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-98. DOI: 10.1056/NEjMoa1408617.

74. Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015;373(1):35-47. DOI: 10.1056/NEjMoa1414799.

75. Fuster jj, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355(6327):842-847. DOI: 10.1126/science.aag1381.

76. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde j, et al. Mutations of ASxL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183-6. DOI: 10.1038/leu.2009.141.

77. Kwok B, Hall jM, witte jS, xu Y, Reddy P, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355-61. DOI: 10.1182/blood-2015-08-667063.

78. jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTx, EZH2, and DNMT3A. Blood. 2011;118(14):3932-41. DOI: 10.1182/blood-2010-10-311019.


Review

For citations:


Lipilkin P.V., Kulaeva E.D., Zeltser A.N., Mordanov S.V., Shatokhin Yu.V. Myelodysplastic syndrome: epidemiology, diagnostics and epigenetic disorders. Medical Herald of the South of Russia. 2022;13(2):179-190. (In Russ.) https://doi.org/10.21886/2219-8075-2022-13-2-179-190

Views: 1796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)