Preview

Medical Herald of the South of Russia

Advanced search

Obesity = inflammation. Pathogenesis. How does this threaten men?

https://doi.org/10.21886/2219-8075-2020-11-4-6-23

Abstract

Today, adipose tissue has ceased to be perceived only as an energetic substance with its intrinsic properties in the form of thermoregulation and mechanical protection, known since the beginning of the twentieth century. Today, adipose tissue is a fullfledged endocrine organ that is distributed throughout the body — the usefulness of its work directly affects the energy balance, not only through involvement in the metabolism of carbohydrates and fats, but also by the production of many adipokines, a total of more than 600 known today. This review research the causal relationship of subclinical or systemic inflammation of adipose tissue with an excess of energy resources, insulin resistance, leptin, adiponectin, estrogen metabolites and one of the most pro-inflammatory cytokines - interleukin 6. Attention is also paid to the relationship between prostate cancer and obesity, as an ambiguous relationship due to the maximum paying attention to testosterone. Further study of adipose tissue will make it possible to establish specific pathophysiological mechanisms responsible for the development of not only disorders of carbohydrate metabolism, but also a number of other systems in view of the not fully understood systemic action of adipokines and associated inflammatory mediators in obese individuals. Systematic literature search was perform in the Medline, Scopus, Web of Science and elibrary databases.

About the Authors

Z. Sh. Pavlova
Medical Scientific-Educational Center of Lomonosov Moscow State University
Russian Federation

Cand. Sci. (Med.), Endocrinologist, Senior Researcher, Department of Age-Associated Diseases, 

Moscow



I. I. Golodnikov
https://istina.msu.ru/profile/Ivan.gol/
Russian Medical Academy of Continuing Professional Education
Russian Federation

Resident Physician, Department of Endocrinology, 

Moscow



References

1. Schwarz V. Inflammation as a factor in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Therapeutic archive. 2009;(10):74-80. (In Russ.). eLIBRARY ID: 13055602

2. Abaturov A.E. Features of metabolic syndrome in children. Dityachiy lіkar. 2011(4):54-6. (In Russ.).

3. Shvarts V. [Adipose tissue inflammation. Part 1. Morphological and functional manifestations]. Probl Endokrinol (Mosk). 2009;55(4):44-49. (In Russ.). https://doi.org/10.14341/probl200955444-49

4. Shvarts V. [Inflammation of adipose tissue. Part 2. Pathogenetic role in type 2 diabetes mellitus]. Probl Endokrinol (Mosk). 2009;55(5):43-48. (In Russ.). https://doi.org/10.14341/probl200955543-48

5. Shvarts V. [Inflammation of adipose tissue. Part 3. Pathogenetic role in the development of atherosclerosis]. Probl Endokrinol (Mosk). 2009;55(6):40-45. (In Russ.). https://doi.org/10.14341/probl200955640-45

6. Shvarts V. [Adipose tissue as an endocrine organ]. Probl Endokrinol (Mosk). 2009;55(1):38-43. (In Russ.). https://doi.org/10.14341/probl200955138-43

7. Shvartsburd P.M. Different faces of insulin resistance. Chemistry and Life. 2013;(7):2-5. (In Russ.).

8. Iizuka K. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism. Nutrients. 2017;9(2):181. https://doi.org/10.3390/nu9020181

9. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(7):1304-10. https://doi.org/10.1161/ATVBAHA.108.165100

10. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277-86. https://doi.org/10.2337/diabetes.54.8.2277

11. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab. 2008;93(8):3215-21. https://doi.org/10.1210/jc.2007-2630

12. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-808. https://doi.org/10.1172/JCI19246

13. Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113(10):1141-7. https://doi.org/10.1111/j.1471-0528.2006.01004.x

14. Sell H, Dietze-Schroeder D, Eckel J. The adipocytemyocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416-22. https://doi.org/10.1016/j.tem.2006.10.010

15. Nishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008;118(2):710-21. https://doi.org/10.1172/JCI33328

16. Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657- 69. https://doi.org/10.1096/fj.04-2204com

17. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554-61. https://doi.org/10.2337/db06-0133

18. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49(7):1562-8. doi: 10.1194/jlr.M800019-JLR200.

19. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347-55. doi: 10.1194/jlr.M500294-JLR200

20. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008;117(6):806-15. doi: 10.1161/CIRCULATIONAHA.107.724096

21. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175-84. DOI: 10.1172/JCI29881

22. Constant VA, Gagnon A, Yarmo M, Sorisky A. The antiadipogenic effect of macrophage-conditioned medium depends on ERK1/2 activation. Metabolism. 2008;57(4):465- 72. DOI: 10.1016/j.metabol.2007.11.005

23. Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295(2):E313-22. doi: 10.1152/ajpendo.90296.2008

24. Hatoum OA, Heidemann J, Binion DG. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:78-97. doi: 10.1196/annals.1326.003

25. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191-203. doi: 10.1016/s0021-9150(03)00097-2

26. Miller MA, Cappuccio FP. Cellular adhesion molecules and their relationship with measures of obesity and metabolic syndrome in a multiethnic population. Int J Obes (Lond). 2006;30(8):1176-82. doi: 10.1038/sj.ijo.0803264

27. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, et al. MCP1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-505. doi: 10.1172/JCI26498

28. Kampf C, Bodin B, Källskog O, Carlsson C, Jansson L. Marked increase in white adipose tissue blood perfusion in the type 2 diabetic GK rat. Diabetes. 2005;54(9):2620-7. doi: 10.2337/diabetes.54.9.2620

29. Simonsen L, Enevoldsen LH, Bülow J. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique. Clin Physiol Funct Imaging. 2003;23(6):320-3. doi: 10.1046/j.1475-0961.2003.00509.x

30. Summers LK, Samra JS, Frayn KN. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk? Atherosclerosis. 1999;147(1):11-5. doi: 10.1016/s0021-9150(99)00172-0

31. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227-35. doi: 10.1017/S0007114508971282

32. Kita T, Kume N, Minami M, Hayashida K, Murayama T, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199-205; discussion 205-6. doi: 10.1111/j.1749-6632.2001.tb03941.x

33. Matsuoka H. Endothelial dysfunction associated with oxidative stress in human. Diabetes Res Clin Pract. 2001;54 Suppl 2:S65-72. doi: 10.1016/s0168-8227(01)00337-0

34. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34(4 Pt 1):539-45. doi: 10.1161/01.hyp.34.4.539

35. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100(5):1230-9. doi: 10.1172/JCI119636

36. Hoch M, Eberle AN, Peterli R, Peters T, Seboek D, et al. LPS induces interleukin-6 and interleukin-8 but not tumor necrosis factor-alpha in human adipocytes. Cytokine. 2008;41(1):29-37. DOI: 10.1016/j.cyto.2007.10.008

37. de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem. 2004;279(17):17070- 8. doi: 10.1074/jbc.M312021200

38. Granner DK, O’Brien RM. Molecular physiology and genetics of NIDDM. Importance of metabolic staging. Diabetes Care. 1992;15(3):369-95. doi: 10.2337/diacare.15.3.369

39. Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 2003;14(5):447-55. doi: 10.1016/s1359-6101(03)00052-2

40. Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. 2002;51(11):3176-88. doi: 10.2337/diabetes.51.11.3176

41. Zhu J, Yong W, Wu X, Yu Y, Lv J, et al. Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes. Biochem Biophys Res Commun. 2008;369(2):471- 7. doi: 10.1016/j.bbrc.2008.02.034

42. Hattori Y, Nakano Y, Hattori S, Tomizawa A, Inukai K, Kasai K. High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-kappaB activation in vascular endothelial cells. FEBS Lett. 2008;582(12):1719-24. DOI: 10.1016/j.febslet.2008.04.037

43. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMPdependent pathway. Circulation. 2000;102(11):1296-301. DOI: 10.1161/01.cir.102.11.1296

44. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11(3):368-72. DOI: 10.1038/oby.2003.48

45. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459-69. DOI: 10.1007/s00125-003-1074-z

46. Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond). 2008;32(2):268-74. DOI: 10.1038/sj.ijo.0803726

47. Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes. 2003;52(4):942-7. DOI: 10.2337/diabetes.52.4.942

48. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930-5. DOI: 10.1210/jcem.86.5.7463

49. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002;360(9326):57-8. DOI: 10.1016/s0140-6736(02)09335-2

50. Spranger J, Kroke A, Möhlig M, Bergmann MM, Ristow M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361(9353):226-8. DOI: 10.1016/s0140-6736(03)12255-6

51. De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99(4):643-50. DOI: 10.1172/jci119207

52. Lee MD, Zentella A, Vine W, Pekala PH, Cerami A. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci U S A. 1987;84(9):2590- 4. DOI: 10.1073/pnas.84.9.2590

53. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Proand anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515 ( Pt 1)(Pt 1):287-91. DOI: 10.1111/j.1469-7793.1999.287ad.x

54. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335-47. DOI: 10.1096/fj.01-0876rev

55. Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol. 2001;537(Pt 2):633-9. DOI: 10.1111/j.1469-7793.2001.00633.x

56. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol. 2003;549(Pt 2):607-12. DOI: 10.1113/jphysiol.2003.042374

57. Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. Faseb j. 2004;18(9):992-4. DOI: 10.1096/fj.03-1259fje

58. Romantsova T.I. Molecular mechanisms of body weight regulation as a target of pathogenetic therapy of obesity. Therapy. 2015;4(4):71-78. (in Russ.). eLIBRARY ID: 25512742

59. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol. 2007;27(5):996-1003. DOI: 10.1161/atvbaha.106.131755

60. Borodina S.V., Gapparova K.M., Zaynudinov Z.M., Grigor’yan O.N.. Genetic predictors of obesity. Obesity and metabolism. 2016;13(2):7-13. (in Russ.). eLIBRARY ID: 27161173

61. Pavlova Z.Sh, Golodnikov I.I, Kamalov A.A. Biochemical mechanisms of development of non-alcoholic fatty liver disease under the influence of fructose. Tekhnologii zhivykh sistem. 2018;15(4):18-27. (in Russ.). DOI: 10.18127/j20700997-201804-02

62. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501. DOI: 10.1161/01.res.86.5.494

63. Cutolo M. Estrogen metabolites: increasing evidence for their role in rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 2004;31(3):419-21. PMID: 14994382.

64. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63(5):800-9. DOI: 10.1016/j.eururo.2012.11.013


Review

For citations:


Pavlova Z.Sh., Golodnikov I.I. Obesity = inflammation. Pathogenesis. How does this threaten men? Medical Herald of the South of Russia. 2020;11(4):6-23. (In Russ.) https://doi.org/10.21886/2219-8075-2020-11-4-6-23

Views: 13297


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)