Obesity = inflammation. Pathogenesis. How does this threaten men?
https://doi.org/10.21886/2219-8075-2020-11-4-6-23
Abstract
About the Authors
Z. Sh. PavlovaRussian Federation
Cand. Sci. (Med.), Endocrinologist, Senior Researcher, Department of Age-Associated Diseases,
Moscow
I. I. Golodnikov
Russian Medical Academy of Continuing Professional Education
Russian Federation
Resident Physician, Department of Endocrinology,
Moscow
References
1. Schwarz V. Inflammation as a factor in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Therapeutic archive. 2009;(10):74-80. (In Russ.). eLIBRARY ID: 13055602
2. Abaturov A.E. Features of metabolic syndrome in children. Dityachiy lіkar. 2011(4):54-6. (In Russ.).
3. Shvarts V. [Adipose tissue inflammation. Part 1. Morphological and functional manifestations]. Probl Endokrinol (Mosk). 2009;55(4):44-49. (In Russ.). https://doi.org/10.14341/probl200955444-49
4. Shvarts V. [Inflammation of adipose tissue. Part 2. Pathogenetic role in type 2 diabetes mellitus]. Probl Endokrinol (Mosk). 2009;55(5):43-48. (In Russ.). https://doi.org/10.14341/probl200955543-48
5. Shvarts V. [Inflammation of adipose tissue. Part 3. Pathogenetic role in the development of atherosclerosis]. Probl Endokrinol (Mosk). 2009;55(6):40-45. (In Russ.). https://doi.org/10.14341/probl200955640-45
6. Shvarts V. [Adipose tissue as an endocrine organ]. Probl Endokrinol (Mosk). 2009;55(1):38-43. (In Russ.). https://doi.org/10.14341/probl200955138-43
7. Shvartsburd P.M. Different faces of insulin resistance. Chemistry and Life. 2013;(7):2-5. (In Russ.).
8. Iizuka K. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism. Nutrients. 2017;9(2):181. https://doi.org/10.3390/nu9020181
9. Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(7):1304-10. https://doi.org/10.1161/ATVBAHA.108.165100
10. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277-86. https://doi.org/10.2337/diabetes.54.8.2277
11. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab. 2008;93(8):3215-21. https://doi.org/10.1210/jc.2007-2630
12. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-808. https://doi.org/10.1172/JCI19246
13. Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113(10):1141-7. https://doi.org/10.1111/j.1471-0528.2006.01004.x
14. Sell H, Dietze-Schroeder D, Eckel J. The adipocytemyocyte axis in insulin resistance. Trends Endocrinol Metab. 2006;17(10):416-22. https://doi.org/10.1016/j.tem.2006.10.010
15. Nishimura S, Manabe I, Nagasaki M, Seo K, Yamashita H, et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008;118(2):710-21. https://doi.org/10.1172/JCI33328
16. Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18(14):1657- 69. https://doi.org/10.1096/fj.04-2204com
17. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554-61. https://doi.org/10.2337/db06-0133
18. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res. 2008;49(7):1562-8. doi: 10.1194/jlr.M800019-JLR200.
19. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347-55. doi: 10.1194/jlr.M500294-JLR200
20. Bourlier V, Zakaroff-Girard A, Miranville A, De Barros S, Maumus M, et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation. 2008;117(6):806-15. doi: 10.1161/CIRCULATIONAHA.107.724096
21. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175-84. DOI: 10.1172/JCI29881
22. Constant VA, Gagnon A, Yarmo M, Sorisky A. The antiadipogenic effect of macrophage-conditioned medium depends on ERK1/2 activation. Metabolism. 2008;57(4):465- 72. DOI: 10.1016/j.metabol.2007.11.005
23. Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab. 2008;295(2):E313-22. doi: 10.1152/ajpendo.90296.2008
24. Hatoum OA, Heidemann J, Binion DG. The intestinal microvasculature as a therapeutic target in inflammatory bowel disease. Ann N Y Acad Sci. 2006;1072:78-97. doi: 10.1196/annals.1326.003
25. Blankenberg S, Barbaux S, Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis. 2003;170(2):191-203. doi: 10.1016/s0021-9150(03)00097-2
26. Miller MA, Cappuccio FP. Cellular adhesion molecules and their relationship with measures of obesity and metabolic syndrome in a multiethnic population. Int J Obes (Lond). 2006;30(8):1176-82. doi: 10.1038/sj.ijo.0803264
27. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, et al. MCP1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494-505. doi: 10.1172/JCI26498
28. Kampf C, Bodin B, Källskog O, Carlsson C, Jansson L. Marked increase in white adipose tissue blood perfusion in the type 2 diabetic GK rat. Diabetes. 2005;54(9):2620-7. doi: 10.2337/diabetes.54.9.2620
29. Simonsen L, Enevoldsen LH, Bülow J. Determination of adipose tissue blood flow with local 133Xe clearance. Evaluation of a new labelling technique. Clin Physiol Funct Imaging. 2003;23(6):320-3. doi: 10.1046/j.1475-0961.2003.00509.x
30. Summers LK, Samra JS, Frayn KN. Impaired postprandial tissue regulation of blood flow in insulin resistance: a determinant of cardiovascular risk? Atherosclerosis. 1999;147(1):11-5. doi: 10.1016/s0021-9150(99)00172-0
31. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100(2):227-35. doi: 10.1017/S0007114508971282
32. Kita T, Kume N, Minami M, Hayashida K, Murayama T, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci. 2001;947:199-205; discussion 205-6. doi: 10.1111/j.1749-6632.2001.tb03941.x
33. Matsuoka H. Endothelial dysfunction associated with oxidative stress in human. Diabetes Res Clin Pract. 2001;54 Suppl 2:S65-72. doi: 10.1016/s0168-8227(01)00337-0
34. McIntyre M, Bohr DF, Dominiczak AF. Endothelial function in hypertension: the role of superoxide anion. Hypertension. 1999;34(4 Pt 1):539-45. doi: 10.1161/01.hyp.34.4.539
35. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100(5):1230-9. doi: 10.1172/JCI119636
36. Hoch M, Eberle AN, Peterli R, Peters T, Seboek D, et al. LPS induces interleukin-6 and interleukin-8 but not tumor necrosis factor-alpha in human adipocytes. Cytokine. 2008;41(1):29-37. DOI: 10.1016/j.cyto.2007.10.008
37. de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem. 2004;279(17):17070- 8. doi: 10.1074/jbc.M312021200
38. Granner DK, O’Brien RM. Molecular physiology and genetics of NIDDM. Importance of metabolic staging. Diabetes Care. 1992;15(3):369-95. doi: 10.2337/diacare.15.3.369
39. Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 2003;14(5):447-55. doi: 10.1016/s1359-6101(03)00052-2
40. Ruan H, Miles PD, Ladd CM, Ross K, Golub TR, et al. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes. 2002;51(11):3176-88. doi: 10.2337/diabetes.51.11.3176
41. Zhu J, Yong W, Wu X, Yu Y, Lv J, et al. Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes. Biochem Biophys Res Commun. 2008;369(2):471- 7. doi: 10.1016/j.bbrc.2008.02.034
42. Hattori Y, Nakano Y, Hattori S, Tomizawa A, Inukai K, Kasai K. High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-kappaB activation in vascular endothelial cells. FEBS Lett. 2008;582(12):1719-24. DOI: 10.1016/j.febslet.2008.04.037
43. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMPdependent pathway. Circulation. 2000;102(11):1296-301. DOI: 10.1161/01.cir.102.11.1296
44. Staiger H, Tschritter O, Machann J, Thamer C, Fritsche A, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res. 2003;11(3):368-72. DOI: 10.1038/oby.2003.48
45. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459-69. DOI: 10.1007/s00125-003-1074-z
46. Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, et al. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond). 2008;32(2):268-74. DOI: 10.1038/sj.ijo.0803726
47. Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes. 2003;52(4):942-7. DOI: 10.2337/diabetes.52.4.942
48. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86(5):1930-5. DOI: 10.1210/jcem.86.5.7463
49. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002;360(9326):57-8. DOI: 10.1016/s0140-6736(02)09335-2
50. Spranger J, Kroke A, Möhlig M, Bergmann MM, Ristow M, et al. Adiponectin and protection against type 2 diabetes mellitus. Lancet. 2003;361(9353):226-8. DOI: 10.1016/s0140-6736(03)12255-6
51. De Benedetti F, Alonzi T, Moretta A, Lazzaro D, Costa P, et al. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J Clin Invest. 1997;99(4):643-50. DOI: 10.1172/jci119207
52. Lee MD, Zentella A, Vine W, Pekala PH, Cerami A. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci U S A. 1987;84(9):2590- 4. DOI: 10.1073/pnas.84.9.2590
53. Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Proand anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515 ( Pt 1)(Pt 1):287-91. DOI: 10.1111/j.1469-7793.1999.287ad.x
54. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335-47. DOI: 10.1096/fj.01-0876rev
55. Steensberg A, Febbraio MA, Osada T, Schjerling P, van Hall G, et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol. 2001;537(Pt 2):633-9. DOI: 10.1111/j.1469-7793.2001.00633.x
56. Febbraio MA, Steensberg A, Keller C, Starkie RL, Nielsen HB, et al. Glucose ingestion attenuates interleukin-6 release from contracting skeletal muscle in humans. J Physiol. 2003;549(Pt 2):607-12. DOI: 10.1113/jphysiol.2003.042374
57. Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA. Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. Faseb j. 2004;18(9):992-4. DOI: 10.1096/fj.03-1259fje
58. Romantsova T.I. Molecular mechanisms of body weight regulation as a target of pathogenetic therapy of obesity. Therapy. 2015;4(4):71-78. (in Russ.). eLIBRARY ID: 25512742
59. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler Thromb Vasc Biol. 2007;27(5):996-1003. DOI: 10.1161/atvbaha.106.131755
60. Borodina S.V., Gapparova K.M., Zaynudinov Z.M., Grigor’yan O.N.. Genetic predictors of obesity. Obesity and metabolism. 2016;13(2):7-13. (in Russ.). eLIBRARY ID: 27161173
61. Pavlova Z.Sh, Golodnikov I.I, Kamalov A.A. Biochemical mechanisms of development of non-alcoholic fatty liver disease under the influence of fructose. Tekhnologii zhivykh sistem. 2018;15(4):18-27. (in Russ.). DOI: 10.18127/j20700997-201804-02
62. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501. DOI: 10.1161/01.res.86.5.494
63. Cutolo M. Estrogen metabolites: increasing evidence for their role in rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 2004;31(3):419-21. PMID: 14994382.
64. Allott EH, Masko EM, Freedland SJ. Obesity and prostate cancer: weighing the evidence. Eur Urol. 2013;63(5):800-9. DOI: 10.1016/j.eururo.2012.11.013
Review
For citations:
Pavlova Z.Sh., Golodnikov I.I. Obesity = inflammation. Pathogenesis. How does this threaten men? Medical Herald of the South of Russia. 2020;11(4):6-23. (In Russ.) https://doi.org/10.21886/2219-8075-2020-11-4-6-23