Preview

Медицинский вестник Юга России

Расширенный поиск

Основы безопасности генной терапии

Аннотация

К настоящему времени в научных кругах всего мира обсуждаются проблемы безопасности при проведении генной терапии у широкой категории пациентов. В данном обзоре суммированы результаты клинических исследований, приведены пояснения относительно побочных эффектов, связанных с генотоксичностью векторной интеграции, обсуждаются факторы, которые могут вызывать случаи генотоксичности, а также предложены подходы, способные сохранить или повысить клиническую эффективность генной терапии с использованием в качестве мишеней гемопоэтических стволовых клеток, при этом существенно снижая риск развития лейкемии и других побочных эффектов, связанных с включением вектора в геном.

Об авторах

С. Е. Ипатов
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия

117997, г. Москва, Ленинский проспект, д. 117/2



С. А. Румянцев
ФГУ Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии Минздравсоцразвития России
Россия

117997, г. Москва, Ленинский проспект, д. 117/2



Список литературы

1. Larochelle A, Dunbar CE. Genetic manipulation of hematopoietic stem cells //Semin Hematol. – 2004. - №41. – P.257-271.

2. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease //Science. – 2000. - №288. – P.669-672.

3. Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning //Science. – 2002. - №296. – P.2410-2413.

4. Gaspar HB, Parsley KL, Howe S, et al. Gene therapy of Xlinked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector //Lancet. – 2004. - №364. – P.2181-2187.

5. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for Xlinked severe combined immunodeficiency //N Engl J Med.- 2003. - №348. – P.255-256.

6. Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. LMO2- associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 //Science. – 2003. - №302. – P.415-419.

7. Fischer A, Hacein-Bey-Abina S, Le Deist F, de Saint BG, Cavazzana-Calvo M. Gene therapy for human severe combined immunodeficiencies //Immunity. – 2001. - №15. – P.1-4.

8. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy //N Engl J Med. – 2002. - №346. – P.1185-1193.

9. Blaese RM, Culver KW, Miller AD, et al. T lymphocytedirected gene therapy for ADA-SCID: initial trial results after 4 years // Science. – 1995. - №270. – P.475-480.

10. Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of genemodified umbilical cord blood cells in neonates with adenosine deaminase deficiency //Nat Med. – 1995. - №1. – P.1017-1023.

11. Kohn DB, Hershfield MS, Carbonaro D, et al. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates //Nat Med. – 1998. - №4. – P.775-780.

12. Nam CH, Rabbitts TH. The role of LMO2 in development and in T cell leukemia after chromosomal translocation or retroviral insertion //Mol Ther. – 2006. - №13. – P.15-25.

13. Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights //Science. – 2004. - №303. – P.333.

14. Woods NB, Bottero V, Schmidt M, von KC, Verma IM. Gene therapy: therapeutic gene causing lymphoma //Nature. – 2006. - №440. – P.1123.

15. Thrasher AJ, Gaspar HB, Baum C, et al. Gene therapy: XSCID transgene leukaemogenicity //Nature. – 2006.- №443. – P.E5-E6.

16. Donahue RE, Kessler SW, Bodine D, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer //J Exp Med. – 1992. - №176. – P.1125-1135.

17. Cornetta K, Morgan RA, Anderson WF. Safety issues related to retroviral-mediated gene transfer to humans //Hum Gene Ther. – 1991. - №2. – P.5-14.

18. Schroder AR, Shinn P, Chen H, et al. HIV-1 integration in the human genome favors active genes and local hotspots //Cell. – 2002. - №110. – P.521-529.

19. Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration // Science. – 2003. - №300. – P.1749-1751.

20. Hematti P, Hong BK, Ferguson C, et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells //PLoS Biol. – 2004. - №2. – P.2183-2190.

21. Schwarzwaelder K, Howe SJ, Schmidt M, et al. Gammaretrovirusmediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo //J Clin Invest. – 2007. - №117. – P.2241-2249.

22. Deichmann A, Hacein-Bey-Abina S, Schmidt M, et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy //J Clin Invest. – 2007. - №117. – P.2225-2232.

23. Aiuti A, Cassani B, Andolfi G, et al. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy //J Clin Invest. – 2007. - №117. – P.2233-2240.

24. Suzuki T, Shen H, Akagi K, et al. New genes involved in cancer identified by retroviral tagging //Nat Genet. – 2002. №32. – P.166-174.

25. Calmels B, Ferguson C, Laukkanen MO, et al. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells //Blood. – 2005. - №106. – P.2530-2533.

26. Li Z, Dullmann J, Schiedlmeier B, et al. Murine leukemia induced by retroviral gene marking //Science. – 2002. - №296. – P.497.

27. Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. //Nat Med. – 2006. - №12. – P.401-409.

28. Du D, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary murine bone marrow progenitor cells //Blood. – 2005. - №106. – P.3932-3939.

29. Buonamici S, Chakraborty S, Senyuk V, Nucifora G. The role of EVI1 in normal and leukemic cells //Blood Cells Mol Dis. – 2003. - №31. – P.206-212.

30. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients //Blood. – 2003. - №101. – P.837-845.

31. Kustikova O, Fehse B, Modlich U, et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking // Science. – 2005. - №308. – P.1171-1174.

32. Modlich U, Kustikova OS, Schmidt M, et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis //Blood – 2005. - №105. – P.4235-4246.

33. Seggewiss R, Pittaluga S, Adler RL, et al. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque //Blood. – 2006. - №107. – P.3865-3867.

34. Montini E, Cesana D, Schmidt M, et al. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration //Nat Biotechnol. 2006. - №24. – P.687-696.

35. Modlich U, Bohne J, Schmidt M, et al. Cell culture assays reveal the importance of retroviral vector design for insertional genotoxicity //Blood. – 2006. - №108. – P.2545-2553.

36. Evans-Galea MV, Wielgosz MM, Hanawa H, Srivastava DK, Nienhuis AW. Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector //Mol Ther. – 2007. - №15. – P.801-809.

37. Mitchell RS, Beitzel BF, Schroder AR, et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences //PLoS Biol. – 2004. - №2. – P.E234.

38. Trobridge GD, Miller DG, Jacobs MA, et al. Foamy virus vector integration sites in normal human cells //Proc Natl Acad Sci U S A. – 2006. – №103. – P.1498-1503.

39. Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases // Nature. – 2005. - №435. – P.646-651.

40. Chalberg TW, Portlock JL, Olivares EC, et al. Integration specificity of phage phiC31 integrase in the human genome //J Mol Biol. – 2006. - №357. – P.28-48.

41. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications //Genome Res. – 2007. - №17. – P.1186-1194.

42. Hacker CV, Vink CA, Wardell TW, et al. The integration profile of EIAV-based vectors //Mol Ther. – 2006. - №14. – P.536-545.

43. Themis M, Waddington SN, Schmidt M, et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice //Mol Ther. – 2005. - №12. – P.763-771.

44. Yant SR, Wu X, Huang Y, et al. High-resolution genome-wide mapping of transposon integration in mammals //Mol Cell Biol. – 2005. - №25. – P.2085-2094.

45. Nakai H, Wu X, Fuess S, et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver //J Virol. – 2005. - №79. – P.3606-3614.

46. Donsante A, Vogler C, Muzyczka N, et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors // Gene Ther. – 2001. - №8. – P.1343-1346.

47. Bell P, Wang L, Lebherz C, et al. No evidence for tumorigenesis of AAV vectors in a large-scale study in mice //Mol Ther. – 2005. - №12. – P.299-306.


Рецензия

Для цитирования:


Ипатов С.Е., Румянцев С.А. Основы безопасности генной терапии. Медицинский вестник Юга России. 2010;(2):4-9.

For citation:


Ipatov S.E., Roumiantsev S.A. Basis of Gene Therapy. Medical Herald of the South of Russia. 2010;(2):4-9. (In Russ.)

Просмотров: 294


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)