Study of biofilms by V. cholerae strains on the surfaces of biotic and abiotic substrates using mass spectrometry
https://doi.org/10.21886/2219-8075-2020-11-2-94-101
Abstract
Objective: identification and comparative study of protein spectra of Vibrio cholerae biofilms by MALDI-ToF mass spectrometry.
Materials and methods: V. cholerae O1 strains isolated from different sources were studied. Methods: bacteriological, mass spectrometry.
Results: mass spectrometric analysis showed that it was impossible to identify strains from “plankton” samples and from chitin and plastic plates. After culturing the biofilm and plankton strains, all of them were assigned to the V. cholerae species with a Score above 2,300. A сomparative analysis of MALDI-ToF mass spectra of different variants of V. cholera cultures revealed differences, while general peaks with different intensity were maintained.
Conclusions: all samples of V. cholerae cultures taken for analysis aft er culture on a nutrient medium were reliably identified with a high Score. As a result of comparative analysis of protein mass spectra by the m/z value and relative intensity of peaks, no proteins characteristic only for plankton cultures or biofilms of V. cholerae were detected. The stability of the phenotypic properties of V. cholerae regardless of its form of existence and the high reliability of the MALDI-ToF mass spectrometry method for identifying both planktonic and biofilm forms of V. cholerae with the preservation of the research protocol and bacteriological culturation.
About the Authors
M. V. PoleevaRussian Federation
Marina V. Poleeva, researcher of Research
Rostov-on-Don
O. S. Chemisova
Russian Federation
Olga S. Chemisova, Cand. Sci. (Bio), the acting head laboratory Research
Rostovon-Don
E. A. Menshikova
Russian Federation
Elena A. Menshikova, Cand. Sci. (Bio), senior researcher оf Research
Rostov-on-Don
M. M. Sagakyants
Russian Federation
Margaret M. Sagakyants, researcher of Research
Rostov-on-Don
E. M. Kurbatova
Russian Federation
Ekaterina M. Kurbatova, researcher of Research
Rostov-on-Don
References
1. Ahmed A.H, El Bayomi R.M, Hussein M.A, Khedr M.H.E, Remela A.E.M, El-Ashram A.M.M. Molecular characterization, antibiotic resistance pattern and biofi lm formation of Vibrio parahaemolyticus and V. cholerae isolated from crustaceans and humans. International Journal of Food Microbiology. 2018;274:31-37. https://doi.org/10.1016/j.ijfoodmicro.2018.03.013
2. Song X, Ma Y, Fu J, Zhao A, Guo Z, et al. Effect of temperature on pathogenic and non-pathogenic Vibrio parahaemolyticus biofilmformation. Food Control. 2017;7:485-491. https://doi.org/10.1016/j.foodcont.2016.08.041
3. Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrobial Agents and Chemotherapy. 2000;44(3):640-646. https://doi.org/10.1128/aac.44.3.640-646.2000
4. Ashrafudoulla M, Furkanur M, Mizan R, Park H, Byun K.-H, et al. Genetic Relationship, Virulence Factors, Drug Resistance Profi le and Biofi lm Formation Ability of Vibrio parahaemolyticus Isolated From Mussel. Front Microbiol. 2019;10 https://doi.org/10.3389/fmicb.2019.00513
5. Matz C, McDougald D, Moreno A.M, Yung P.Y, Yildiz F.H, Kjelleberg S. Biofi lm formation and phenotypic variation enhance predation-driven persistence of Vibrio choleraе. Proc Natl Acad Sci USA. 2005;102(46):16819-16824. https://doi.org/10.1073/pnas.0505350102
6. Tamayo R, Patimall Bh, Camilli A. Growth in a Biofi lm Induces a Hyperinfectious Phenotype in Vibrio cholerae. Infect Immun. 2010;78(8):3560-3569. https://doi.org/10.1128/iai.00048-10
7. Nalin D.R, Daya V, Reid A, Levine M.M, Cisneros L. Adsorption and growth of on chitin. Infect Immun. 1979;25:768-770. https://doi.org/10.1128/iai.25.2.768-770.1979
8. Zhu J, Mekalanos J.J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell. 2003;5:647-656. https://doi.org/10.1016/s1534-5807(03)00295-8
9. Нirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull. 2011;62(8):1683-1692. https://doi.org/10.1016/j.marpolbul.2011.06.004
10. Zettler E.R, Mincer T.J, Amaral-Zettler L.A. Life in the «Plastisphere »: Microbial Communities on Plastic Marine Debris. Environ Sci Technol. 2013;47(13):7137-7146. https://doi.org/10.1021/es401288x
11. Osovskaya I.I., Budilina D.L., Tarabukina E.B., Nud’ga L.A. Khitin-glyukanovye kompleksy. Fiziko-khimicheskie svoystva i molekulyarnye kharakteristiki. eds. Poltoratskii G.M. Saint Petersburg: GOUVPO SPbGTURP; 2010. (In Russ.).
12. Kulikalova E.S., Urbanovich L.Ya., Sappo S.G., Mironova L.V., Markov E.Yu. i dr. Biofi lm of Vibrio cholerae: obtaining, characterization and role in the agent reservation in water environment. Zhurn. mikrobiol. 2015;1:3-11. (In Russ.). eLIBRARY ID: 25592654.
13. Kull S, Pauly D, Stormann B, Kirchner S, Stommler M, et al. Multiplex Detection of Microbial and Plant Toxins by Immunoaffi nity Enrichment and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem. 2010;82(7):2910-2924. https://doi.org/10.1021/ac902909r
14. Gagnaire J, Dauwalder O, Boisset S, Khau ., Freydière A.-M, et al. Detection of Delta-Toxin Production by Whole-Cell MALDI-TOF Mass Spectrometry. PLoS ONE. 2012;7(7). https://doi.org/10.1371/journal.pone.0040660
15. Fagerquist K.C, Zaragozа J.W, Bacteriophage cell lysis of Shiga toxin-producing Escherichia coli for top-down proteomic identifi cation of Shiga toxins 1 & 2 using matrix-assisted laser desorption/ionization tandem time-of-fl ight mass spectrometry // Rapid Commun Mass Spectrom. 2016;30(6):671-680. https://doi.org/10.1002/rcm.7507
16. Bocharova Yu.A, Chebotar I.V, Mayanskii N.A. Th e possibilities, problems and perspectives of mass-spectrometry in medical microbiology: publications review. Klinicheskaya Laboratornaya Diagnostika. 2016;61(4):249-256. (In Russ.). https://doi10.18821/0869-2084-2016-61-4-249-256.
17. Kuhns M, Zautner A.E, Rabsch W, Zimmermann O, Weig M, Bader O, Groß U. Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS One. 2012;7(6). https://doi.org/10.1371/journal.pone.0040004
18. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K. Phenotypic characterization of Streptococcus pneumoniae biofi lm development. J Bacteriol. 2006;188(7):2325-2335. https://doi.org/10.1128/jb.188.7.2325-2335.2006
19. Shin J.H, Lee H.W, Kim S.M, Kim J. Proteomic analysis of Acinetobacter baumannii in biofi lm and planktonic growth mode. J. Microbiol. 2010;47(6):728-735. http://doi.org/10.1007/s12275-009-0158-y
20. Park AJ, Murphy K, Krieger JR, Brewer D, Taylor P, Habash M, Khursigara CM. A temporal examination of the planktonic and biofi lm proteome of whole cell Pseudomonas aeruginosa PA O1 using quantitative mass spectrometry. Mol Cell Proteomics. 2014;13(4):1095-105. https://doi.org/10.1074/mcp.m113.033985
21. Th omas D.P, Bachmann S.., Lopez-Ribot J.L. Proteomics for the analysis of the Candida albicans biofi lm lifestyle. Proteomics. 2006;6(21):5795-5804. https://doi.org/10.1002/pmic.200600332
22. Titova S.V., Verkina L.M. Th e modeling of biofi lms of comma bacillus on solid surfaces (glass and plastic) and their visualization in light and luminescent microscopes. Klinicheskaya i laboratornaya diagnostika. 2016;61(4):238-241. https://doi.org/10.18821/0869-2084-2016-61-2-238-241
23. Popov D.A., Ovseenko S.T., Vostrikova T.Yu. Express identifi cation of positive blood cultures using direct MALDITOF mass spectrometry. Anesteziologiya i reanimatologiya. 2015;60(5):71-75. (In Russ.). eLIBRARY ID: 24379920
24. Ferreira L, Sanchez-Juanes F, Gonzalez-Avila M, Cembrero-Fucinos D, et al. Direct identifi cation of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of fl ight mass spectrometry. J Clin Microbiol. 2010;48(6):2110-2115. https://doi.org/10.1128/jcm.02215-09
Review
For citations:
Poleeva M.V., Chemisova O.S., Menshikova E.A., Sagakyants M.M., Kurbatova E.M. Study of biofilms by V. cholerae strains on the surfaces of biotic and abiotic substrates using mass spectrometry. Medical Herald of the South of Russia. 2020;11(2):94-101. (In Russ.) https://doi.org/10.21886/2219-8075-2020-11-2-94-101