Preview

Медицинский вестник Юга России

Расширенный поиск

Современные направления изучения средств неспецифической профилактики холеры

https://doi.org/10.21886/2219-8075-2025-16-4-74-83

Аннотация

Холера остается серьезной проблемой общественного здравоохранения, особенно в странах с низким уровнем доходов, отсутствием водоснабжения и санитарно-просветительного образования среди населения. Вакцинация на сегодняшний день является основной мерой профилактики этой инфекции в эндемичных районах и во время вспышек, однако по ряду причин её эффективность может снижаться: всегда есть группа лиц, имеющих противопоказания к проведению вакцинации и не отвечающих на вакцину. Кроме того, существуют проблемы с доставкой, хранением и транспортировкой вакцинных препаратов. Все эти факторы обусловливают необходимость поиска, разработки и внедрения различных новых средств, препятствующих распространению заболевания. Целью данного обзора являлся анализ литературных данных, посвящённых изучению возможности использования антибиотиков, бактериофагов, пробиотических микроорганизмов, растительных компонентов и других веществ, для профилактики холеры. Список литературы включает 56 источников за последние десять лет, взятых из баз данных «РИНЦ», «eLibrary», «MedLine», «PubMed».

Об авторах

А. В. Филиппенко
Ростовский-на-Дону противочумный институт Роспотребнадзора
Россия

Филиппенко Анна Владимировна, к.б.н., научный сотрудник лаборатории иммунологии

Ростов-на-Дону


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



И. И Иванова
Ростовский-на-Дону противочумный институт Роспотребнадзора
Россия

Иванова Инна Александровна, к.б.н., ведущий научный сотрудник, и.о. зав. лабораторией иммунологии

Ростов-на-Дону


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Н. Д. Омельченко
Ростовский-на-Дону противочумный институт Роспотребнадзора
Россия

Омельченко Наталья Дмитриевна, к.м.н., старший научный сотрудник лаборатории иммунологии

Ростов-на-Дону


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



А. Д. Труфанова
Ростовский-на-Дону противочумный институт Роспотребнадзора
Россия

Труфанова Анастасия Александровна, младший научный сотрудник лаборатории иммунологии

Ростов-на-Дону


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



О. Г. Жукова
Ростовский-на-Дону противочумный институт Роспотребнадзора
Россия

Жукова Ольга Геннадьевна, младший научный сотрудник лаборатории иммунологии

Ростов-на-Дону


Конфликт интересов:

Авторы заявляют об отсутствии конфликта интересов



Список литературы

1. Dias RA. Towards a Comprehensive Definition of Pandemics and Strategies for Prevention: A Historical Review and Future Perspectives. Microorganisms. 2024;12(9):1802. https://doi.org/10.3390/microorganisms12091802

2. Ojeda Rodriguez JA, Hashmi MF, Kahwaji CI. Vibrio cholerae Infection. 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. PMID: 30252355.

3. Hsueh BY, Waters CM. Combating Cholera. F1000Res. 2019;8:F1000 Faculty Rev-589. https://doi.org/10.12688/f1000research.18093.1

4. Eneh S, Onukansi F, Anokwuru C, Ikhuoria O, Edeh G, et al. Cholera outbreak trends in Nigeria: policy recommendations and innovative approaches to prevention and treatment. Front Public Health. 2024;12:1464361. https://doi.org/10.3389/fpubh.2024.1464361

5. Chowdhury F, Ross AG, Islam MT, McMillan NAJ, Qadri F. Diagnosis, Management, and Future Control of Cholera. Clin Microbiol Rev. 2022;35(3):e0021121. https://doi.org/10.1128/cmr.00211-21

6. Кретенчук О.Ф., Полеева М.В., Коршенко В.А., Марковская Е.И., Чемисова О.С. Эффективные средства в борьбе с холерой в эпоху антибиотикорезистентности. Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова. 2022;18(4):72-82.

7. Kunkel A, Lewnard JA, Pitzer VE, Cohen T. Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers. Antimicrob Agents Chemother. 2017;61(8):e00026-17. https://doi.org/10.1128/AAC.00026-17

8. Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the Compositional Quality of Probiotic Formulations Marketed Worldwide. Front Microbiol. 2021;12:693973. https://doi.org/10.3389/fmicb.2021.693973

9. Flaugnatti N, Isaac S, Lemos Rocha LF, Stutzmann S, Rendueles O, et al. Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity proteinindependent mechanisms. Nat Commun. 2021;12(1):5751. https://doi.org/10.1038/s41467-021-26041-0

10. Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol. 2022;10:890479. https://doi.org/10.3389/fbioe.2022.890479

11. Mathipa MG, Thantsha MS. Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathog. 2017;9:28. https://doi.org/10.1186/s13099-017-0178-9

12. Asadi M, Fazeli MR, Sabokbar A. Growth Inhibitory Effect of Lactocare on Vibrio cholerae. Iran J Pathol. 2018;13(3):301-307. PMID: 30636952; PMCID: PMC6322523.

13. Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018;10(445):eaao2586. https://doi.org/10.1126/scitranslmed.aao2586

14. Kaur S, Sharma P, Kalia N, Singh J, Kaur S. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp. Front Cell Infect Microbiol. 2018;8:120. https://doi.org/10.3389/fcimb.2018.00120

15. Weil AA, Becker RL, Harris JB. Vibrio cholerae at the Intersection of Immunity and the Microbiome. mSphere. 2019;4(6):e00597-19. https://doi.org/10.1128/mSphere.00597-19

16. Buatong A, Meidong R, Trongpanich Y, Tongpim S. Production of plant-based fermented beverages possessing functional ingredients antioxidant, γ-aminobutyric acid and antimicrobials using a probiotic Lactiplantibacillus plantarum strain L42g as an efficient starter culture. J Biosci Bioeng. 2022;134(3):226-232. https://doi.org/10.1016/j.jbiosc.2022.05.008

17. Derakhshan-Sefidi M, Bakhshi B, Rasekhi A. Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infect Dis. 2024;24(1):905. https://doi.org/10.1186/s12879-024-09810-2

18. Alavi S, Mitchell JD, Cho JY, Liu R, Macbeth JC, Hsiao A. Interpersonal Gut Microbiome Variation Drives Susceptibility and Resistance to Cholera Infection. Cell. 2020;181(7):1533- 1546.e13. https://doi.org/10.1016/j.cell.2020.05.036

19. Han Z, Min Y, Pang K, Wu D. Therapeutic Approach Targeting Gut Microbiome in Gastrointestinal Infectious Diseases. Int J Mol Sci. 2023;24(21):15654. https://doi.org/10.3390/ijms242115654

20. Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H, et al. Reviving Phage Therapy for the Treatment of Cholera. J Infect Dis. 2019;219(5):786-794. https://doi.org/10.1093/infdis/jiy563

21. Chaudhary N, Mohan B, Kaur H, Modgil V, Kant V, et al. Vibrio Phage VMJ710 Can Prevent and Treat Disease Caused by Pathogenic MDR V. cholerae O1 in an Infant Mouse Model. Antibiotics (Basel). 2023;12(6):1046. https://doi.org/10.3390/antibiotics12061046

22. Тюрина А.В., Гаевская Н.Е., Селянская Н.А., Егиазарян Л.А., Погожова М.П., и др. Активность препарата бактериофагов в отношении антибиотикорезистентных штаммов холерных вибрионов El Tor. Антибиотики и Химиотерапия. 2018;63(7-8):29-32.

23. Yen M, Cairns LS, Camilli A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun. 2017;8:14187. https://doi.org/10.1038/ncomms14187

24. Тюрина А.В., Гаевская Н.Е., Иванова И.А., Филиппенко А.В., Омельченко Н.Д., и др. Оценка эффективности использования холерных бактериофагов для профилактики экспериментальной холеры. Проблемы особо опасных инфекций. 2024;(2):193-195.

25. De R Mobile Genetic Elements of Vibrio cholerae and the Evolution of Its Antimicrobial Resistanc Front.Trop. Dis. 2021;2:691604. https://doi.org/10.3389/fitd.2021.691604

26. Siriphap A, Kiddee A, Duangjai A, Yosboonruang A, Pook-In G, et al. Antimicrobial Activity of the Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) against Clinical Isolates of Multidrug-Resistant Vibrio cholerae. Antibiotics (Basel). 2022;11(4):518. https://doi.org/10.3390/antibiotics11040518

27. Kim HI, Kim JA, Choi EJ, Harris JB, Jeong SY, et al. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype. Biosci Biotechnol Biochem. 2015;79(3):475-83. https://doi.org/10.1080/09168451.2014.991685

28. Paredes A, Leyton Y, Riquelme C, Morales G. A plant from the altiplano of Northern Chile Senecio nutans, inhibits the Vibrio cholerae pathogen. Springerplus. 2016;5(1):1788. https://doi.org/10.1186/s40064-016-3469-6

29. Shittu OB, Ajayi OL, Bankole SO, Popoola TO. Intestinal ameliorative effects of traditional Ogi-tutu, Vernonia amygdalina and Psidium guajava in mice infected with Vibrio cholera. Afr Health Sci. 2016;16(2):620-628. https://doi.org/10.4314/ahs.v16i2.33

30. Renzetti A, Betts JW, Fukumoto K, Rutherford RN Antibacterial green tea catechins from a molecular perspective: mechanisms of action and structure-activity relationships. Food Funct. 2020;18;11(11):9370-9396. https://doi.org/10.1039/d0fo02054k

31. Wu M, Brown AC. Applications of Catechins in the Treatment of Bacterial Infections. Pathogens. 2021;10(5):546. https://doi.org/10.3390/pathogens10050546

32. Bhattacharya D, Sinha R, Mukherjee P, Howlader DR, Nag D, et al. Anti-virulence activity of polyphenolic fraction isolated from Kombucha against Vibrio cholerae. Microb Pathog. 2020;140:103927. https://doi.org/10.1016/j.micpath.2019.103927

33. Bag PK, Roy N, Acharyya S, Saha DR, Koley H, et al. In vivo fluid accumulation-inhibitory, anticolonization and anti-inflammatory and in vitro biofilm-inhibitory activities of methyl gallate isolated from Terminalia chebula against fluoroquinolones resistant Vibrio cholerae. Microb Pathog. 2019;128:41-46. https://doi.org/10.1016/j.micpath.2018.12.037

34. Vasanth S, Mohanraj RS, Mandal J. In-vitro study of the effect of Centella asiatica on cholera toxin production and the gene expression level of ctxA gene in Vibrio cholerae isolates. J Ethnopharmacol. 2021;279:113930. https://doi.org/10.1016/j.jep.2021.113930

35. Ghannay S, Aouadi K, Kadri A, Snoussi M. In Vitro and In Silico Screening of Anti-Vibrio spp., Antibiofilm, Antioxidant and Anti-Quorum Sensing Activities of Cuminum cyminum L. Volatile Oil. Plants (Basel). 2022;11(17):2236. https://doi.org/10.3390/plants11172236

36. Charla R, Patil PP, Bhatkande AA, Khode NR, Balaganur V, et al. In Vitro and In Vivo Inhibitory Activities of Selected Traditional Medicinal Plants against Toxin-Induced Cyto- and Entero- Toxicities in Cholera. Toxins (Basel). 2022;14(10):649. https://doi.org/10.3390/toxins14100649

37. Charla R, Patil PP, Patil VS, Bhandare VV, Karoshi V, Balaganur V, Joshi RK, Harish DR, Roy S. Anti-Cholera toxin activity of selected polyphenols from Careya arborea, Punica granatum, and Psidium guajava. Front Cell Infect Microbiol. 2023;13:1106293. https://doi.org/10.3389/fcimb.2023.1106293

38. Calzada F, Juárez T, García-Hernández N, Valdes M, Ávila O, et al. Antiprotozoal, Antibacterial and Antidiarrheal Properties from the Flowers of Chiranthodendron pentadactylon and Isolated Flavonoids. Pharmacogn Mag. 2017;13(50):240-244. https://doi.org/10.4103/0973-1296.204564

39. Pederson DB, Dong Y, Blue LB, Smith SV, Cao M. Water-soluble cranberry extract inhibits Vibrio cholerae biofilm formation possibly through modulating the second messenger 3', 5' - Cyclic diguanylate level. PLoS One. 2018;13(11):e0207056. https://doi.org/10.1371/journal.pone.0207056

40. Acosta-Smith E, Leon-Sicairos N, Tiwari S, Flores-Villaseñor H, Canizalez-Roman A, et al. Piper betel Compounds Piperidine, Eugenyl Acetate, and Chlorogenic Acid Are BroadSpectrum Anti-Vibrio Compounds that Are Also Effective on MDR Strains of the Pathogen. Pathogens. 2019;8(2):64. https://doi.org/10.3390/pathogens8020064

41. Das S, Chourashi R, Mukherjee P, Kundu S, Koley H, et al. Inhibition of growth and virulence of Vibrio cholerae by carvacrol, an essential oil component of Origanum spp. J Appl Microbiol. 2021;131(3):1147-1161. https://doi.org/10.1111/jam.15022

42. Suriyaprom S, Kaewkod T, Promputtha I, Desvaux M, Tragoolpua Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants (Basel). 2021;10(12):2736. https://doi.org/10.3390/plants10122736

43. Okuda S, Wajima T, Yamada T, Nakaminami H, Ikoshi H, Noguchi N. In vitro growth-inhibitory effects of Portulaca oleracea L. formulation on intestinal pathogens. Access Microbiol. 2021;3(3):000208. https://doi.org/10.1099/acmi.0.000208

44. Arora S, Sharma A. Exploring the Role of Mentha in Gut Microbiota: A Modern Perspective of an Ancient Herb. Recent Adv Food Nutr Agric. 2023;14(2):94-106. https://doi.org/10.2174/2772574X14666230411101712

45. Woodbrey AK, Onyango EO, Pellegrini M, Kovacikova G, Taylor RK, et al. A new class of inhibitors of the AraC family virulence regulator Vibrio cholerae ToxT. Sci Rep. 2017;7:45011. https://doi.org/10.1038/srep45011

46. Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, et al. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera. PLoS Negl Trop Dis. 2018;12(2):e0006266. https://doi.org/10.1371/journal.pntd.0006266

47. Collin F, Maxwell A. The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents. J Mol Biol. 2019;431(18):3400-3426. https://doi.org/10.1016/j.jmb.2019.05.050

48. Kim SY, Randall JR, Gu R, Nguyen QD, Davies BW. Antibacterial action, proteolytic immunity, and in vivo activity of a Vibrio cholerae microcin. Cell Host Microbe. 2024;32(11):1959-1971.e6. https://doi.org/10.1016/j.chom.2024.08.012

49. Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Antibacterial and antibiofilm activity of bone marrow-derived human mesenchymal stem cells secretome against Vibrio cholerae. Microb Pathog. 2020;139:103867. https://doi.org/10.1016/j.micpath.2019.103867

50. Sarwar S, Ali A, Pal M, Chakrabarti P. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor. J Biol Chem. 2017;292(44):18303-18311. https://doi.org/10.1074/jbc.M117.793240

51. Jana SK, Gucchait A, Paul S, Saha T, Acharya S, et al. VirstatinConjugated Gold Nanoparticle with Enhanced Antimicrobial Activity against the Vibrio cholerae El Tor Biotype. ACS Appl Bio Mater. 2021;4(4):3089-3100. https://doi.org/10.1021/acsabm.0c01483

52. Shikha S, Kumar V, Jain A, Dutta D. Bhattacharyya MS. Unraveling the mechanistic insights of sophorolipid-capped gold nanoparticle-induced cell death in Vibrio cholerae. Microbiol Spectr. 2023;11(6):e0017523. https://doi.org/10.1128/spectrum.00175-23


Рецензия

Для цитирования:


Филиппенко А.В., Иванова И.И., Омельченко Н.Д., Труфанова А.Д., Жукова О.Г. Современные направления изучения средств неспецифической профилактики холеры. Медицинский вестник Юга России. 2025;16(4):74-83. https://doi.org/10.21886/2219-8075-2025-16-4-74-83

For citation:


Filippenko A.V., Ivanova I.A., Omelchenko N.D., Trufanova A.A., Zhukova O.G. Modern approaches to studying non-specific prevention of cholera. Medical Herald of the South of Russia. 2025;16(4):74-83. (In Russ.) https://doi.org/10.21886/2219-8075-2025-16-4-74-83

Просмотров: 24


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2219-8075 (Print)
ISSN 2618-7876 (Online)