А.В. Сафроненко

ЦИТОКИНОВЫЙ ПРОФИЛЬ И ФУНКЦИОНАЛЬНЫЕ РЕЗЕРВЫ ЭНДОТЕЛИЯ У БОЛЬНЫХ РЕФРАКТЕРНОЙ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ

Ростовский государственный медицинский университет кафедра фармакологии и клинической фармакологии Россия, 344022, г. Ростов-на-Дону, пер. Нахичеванский 29. E-mail: andrejsaf@mail.ru

Цель: оценить цитокиновый профиль и функциональные резервы эндотелия у больных рефрактерной артериальной гипертензией.

Материалы и методы: обследовано 42 пациента с рефрактерной АГ (30 мужчин и 12 женщин), контрольная группа – 32 пациента. Средний возраст 59,4± 1,12 лет. Метаболическую устойчивость эндотелия у пациентов оценивали при исследовании фармакологически потенциируемой эндотелийзависимой вазодилатации (ЭЗВД). В работе было определено также исходное содержание в крови провоспалительных и противовоспалительных цитокинов.

Результаты: выявлено, что в 66,7% наблюдений метаболическая устойчивость эндотелиальных клеток к продуктам окислительного стресса сохранена, а в 33,3% происходит потеря резистентности к действию цитотоксических продуктов.

Выводы: у больных рефрактерной АГ с отсутствием метаболической устойчивости эндотелия способность к вазодилатации сосудов прогрессивно снижается, что ассоциировано с повышением уровня провоспалительных цитокинов в крови.

Ключевые слова: рефрактерная артериальная гипертензия, дисфункция эндотелия, вазодилатация, цитокины.

A.V. Safronenko

CYTOKINES AND FUNCTIONAL RESERVES OF ENDOTHELIUM IN PATIENTS WITH RESISTANT ARTERIAL HYPERTENSION

Rostov State Medical University
Department of Pharmacology and Clinical Pharmacology
Russia, 344022, Rostov-on-Don, Nakhichevan 29. E-mail: andrejsaf@mail.ru

Purpose: To evaluate the cytokine profile and endothelial functional reserve in patients with ref-teristic hypertension.

Materials and methods: 42 patients with refractory hypertension (30 men and 12 women), control group - 32 patients. The average age of 59.4 ± 1.12 years. The metabolic stability of endothelium in patients evaluated in the study are pharmacologically tentsiiruemoy endothelium-dependent vasodilation (EDVD). The work has been defined as the original content in the blood of proinflammatory and anti-inflammatory cytokines.

Results: It was found that in 66.7% of cases, metabolic stability endothelial cells to oxidative stress product is preserved, and in 33.3% of a loss of resistance to cytotoxic products.

Conclusion: In patients with refractory hypertension without metabolic stability of endothelium-dependent vasodilation Leah ability vessels progressively reduced, which is associated with the increase in the level of pro-inflammatory cytokines in the blood. *Keywords*: refractory hypertension, endothelial dysfunction, vazodila-tation, cytokines.

Введение

лагодаря исследованиям последних лет доказано, что обязательным компонентом артериальной гипертензии (АГ) является эндотелиальная дисфункция, которая способствует прогрессированию нарушений системной гемодинамики и развитию рефрактерности заболевания к лечению [1]. Основная роль в развитии эндотелиальной дисфункции принадлежит «окислительному стрессу», который может развиваться на фоне нарушения функций фагоцитарных клеток, снижения антиоксидантной защиты, разбалансировки цитокиновой сети [2]. Циркулирующие активированные мононуклеарные фагоциты, продуцируя провоспалительные цитокины интерлейкин-1β и фактор некроза опухоли-а, способствуют увеличению экспрессии на эндотелиальных клетках ряда адгезивных молекул, секреции эндотелием интерлейкина-6 и металлопротеиназ, воспалению интимы сосудов, а также изменяют сократимость гладкомышечных клеток сосудов, результатом чего является продукция белков острой фазы, активация компонентов комплемента и фибриногена [3]. Воспаление интимы сосудов приводит к изменениям базовой секреции вазодилататоров аденозина и оксида азота [4].

Во многих исследованиях предметом научного интереса является выявление самого факта дисфункции эндотелия у больных [5] и не оцениваются резервные возможности восстановления деятельности эндотелиальных клеток. Между тем, эндотелий сосудов первым подвергается контакту с биологически активными веществами и раньше других повреждается [6]. Повреждение эндотелиоцитов может происходить как с нарушением структуры, так и с нарушением функции [7]. Исследование функции эндотелиоцитов и факторов, модулирующих функциональное состояние эндотелиальных клеток, позволит ответить на вопрос об обратимости патологических изменений, профилактировать и лечить процессы, приводящие или реализующие сердечно-сосудистые осложнения при рефрактерной АГ.

Цель работы - изучить у больных рефрактерной АГ функциональные резервы эндотелиоцитов и дать оценку значимости влияния цитокинового профиля на функциональное состояние сосудодвигательной функции эндотелия.

Материалы и методы

В основу работы положены результаты обследования и лечения 42 больных рефрактерной АГ. Среди больных были 30 мужчин (71,4%) и 12 женщин (28,6%). Возраст пациентов варьировал от 43 до 72 лет, в среднем составив 59,4±1,12 лет. Все больные имели III степень тяжести АГ. Длительность АГ в среднем составляла 9.9 ± 0.63 лет. Метаболическую устойчивость эндотелия у пациентов оценивали при исследовании фармакологически потенциируемой эндотелийзависимой вазодилатации (ЭЗВД). На первом этапе больным подкожно вводили 0,5 мл 0,01% раствора метахолина и с помощью допплерографического ультразвукового метода определяли изменение диаметра плечевой артерии и скорости кровотока в ней. По изменению диаметра артерии и проценту прироста его величины после пробы по сравнению с исходным значением оценивали эндотелийопосредованные вазодилатационные способности артерии. Диаметр и кровоток артерии изучали в режиме двухмерного ультразвукового сканирования. Для этого использовали систему ACUSON 128 ХР/10 (США). На следующий день больному вводили в прежнем объеме метахолин и внутривенно 5 мл 10% раствора аскорбиновой кислоты. Вновь определяли изменение диаметра и скорости кровотока в артерии. Если при введении аскорбиновой кислоты имело место дополнительное расширение артерии и повышение амплитуды ЭЗВД, то у эндотелиоцитов была сохранена метаболическая устойчивость к окислительному стрессу [8]. Аскорбиновая кислота является мощным водорастворимым антиоксидантом, способным удалять/нейтрализовать ряд реактивных видов кислорода [8]. Если эндотелиальные клетки в условиях снижения концентрации активных форм кислорода и азота улучшали свои сосудодвигательные свойства, то можно говорить о сохраненных резервных возможностях эндотелия, высокой метаболической устойчивости к действию оксидативного стресса.

В случае, если дополнительного расширения артерии на введение аскорбиновой кислоты не происходило, то это свидетельствовало о выраженных повреждениях эндотелиальных клеток и отсутствии резервных возможностей эндотелиоцитов противостоять активным формам кислорода [8].

Состояние ЭЗВД оценивали по степени изменения диаметра плечевой артерии при пробе с реактивной гиперемией.

Определение содержания фактора некроза опухолей альфа (ФНО α), интерлейкина-16ета (ИЛ-1 β), интерлейкина-6 (ИЛ-6), интерлейкина-8 (ИЛ-8), рецепторного антагониста интерлейкина-1 (РАИЛ-1), у-интерферона (у-ИФ) в сыворотке крови осуществляли методом иммуноферментного анализа с использованием соответствующих тест-систем на фотометре Multilabel Counter 1420 Victor (Финляндия) с применением набора реактивов «ИЛ-8-ИФА-БЕСТ» (ЗАО «ВЕКТОР-БЕСТ», г. Новосибирск).

В контрольную группу для определения нормального содержания цитокинов в крови были объединены 32 пациента.

Результаты и обсуждение

Применяемая у больных рефрактерной АГ сосудистая проба с метахолином позволила изучить соответствующее изменение артериального кровотока, связанное со стимуляцией мускариновых холинорецепторов эндотелия. Исходный диаметр плечевой артерии до пробы соответствовал 3,61±0,09 мм и после пробы изменился незначительно – на $2,66\pm0,69\%$, составив $3,71\pm0,25$ мм. Линейная скорость кровотока по плечевой артерии при сосудистой пробе изменялась с 33,99±4,36 см/с до 50,64± 1,61 см/с. При этом, амплитуда реактивной гиперемии составила 37,91±0,19%. Незначительное изменение диаметра плечевой артерии при стимуляции холинорецепторов эндотелия свидетельствовало либо о структурном, либо о функциональном повреждении эндотелиоцитов. Для уточнения природы повреждения сосудистого эндотелия у больных рефрактерной АГ было изучено дальнейшее изменение диаметра артерии и кровотока по ней при внутрисосудистом введении аскорбиновой кислоты. У больных клинической группы после дополнительного

введения аскорбиновой кислоты диаметр плечевой артерии увеличился на $2,96\pm0,28\%$, а линейная скорость кровотока – на $17,05\pm1,31\%$. В результате окончательное значение диаметра плечевой артерии составило $3,82\pm0,28$ мм, а линейная скорость кровотока - $57,07\pm1,83$ см/с.

У больных рефрактерной АГ с высокой метаболической устойчивостью эндотелиоцитов диаметр плечевой артерии при окклюзионной пробе изменялся в среднем с 3,65±0,08 мм до 3,96±0,14 мм, амплитуда ЭЗВД составила 8,49± 0,65%. У пациентов этой же клинической группы, но с отсутствием устойчивости эндотелия к оксидативному стрессу, амплитуда ЭЗВД составила меньшую величину - 3,42±0,87%. Аналогичные по направленности изменения были установлены и для амплитуды реактивной гиперемии. Так, у пациентов с метаболической устойчивостью эндотелия амплитуда реактивной гиперемии - 81,45±3,12% была практически в 2 раза выше, чем у больных с отсутствием резистентности эндотелиоцитов к оксидативному стрессу (40,52±3,94%). Таким образом, у больных рефрактерной АГ при высокой метаболической устойчивости эндотелия его сосудодвигательная функция в условиях деформации механорецепторов реализовывалась в большем объеме.

При индивидуальном анализе изменения диаметра плечевой артерии у больных рефрактерной АГ после введения аскорбиновой кислоты, было установлено, что у 14 пациентов (33,3%) дополнительного расширения артерии не происходило. Данное обстоятельство свидетельствовало о структурно-функциональном повреждении у них эндотелия и об отсутствии у эндотелиоцитов резервных возможностей, реализующихся при уменьшении интенсивности окислительного стресса. У 28 больных рефрактерной АГ (66,7%) введение антиоксиданта сопровождалось расширением артерии и усилением кровотока, что указывало на метаболическую устойчивость эндотелия к окислительному стрессу и сохранению у него сосудодвигательной функции. Свободнорадикальное окисление липидов, белков и нуклеиновых кислот в эндотелиальных клетках ограничило их функциональные возможности, но не вызвало структурного необратимого патологического процесса с потерей чувствительности

На следующем этапе работы были изучены механизмы, лежащие в основе цитокин-обусловленного повреждения интимы сосудов. Как известно, цитокины - это небольшие растворимые белковые молекулы, участвующие в межклеточном взаимодействии. Они периодически продуцируются отдельными клетками и различными тканями в ответ на специфические стимулы [9]. В работе было определено исходное содержание в крови провоспалительных цитокинов ИЛ-1β, ИЛ-6, ИЛ-8, ФНО-α и противовоспалительных факторов - интерферона-ү, рецепторного антагониста к ИЛ-1В. В разных исследованиях можно встретить противоположную трактовку роли некоторых цитокинов (ИЛ-8, ИФ-ү) ввиду их многофункциональности. Для разделения цитокинов по функции на про- и противовоспалительные были использованы представления, изложенные в монографии Кетлинского С.А., Симбирцева А.С. «Цитокины» [10]. Исходное содержание цитокинов в плазме крови у больных рефрактерной АГ по сравнению с контрольной группой практически здоровых людей представлено в табл.1.

Таблица 1

Уровни цитокинов в плазме крови у больных с рефрактерной артериальной гипертензией и в контрольной группе

Показатель	Больные с рефрактерной АГ (n=42)	Контрольная группа (n=32)
ИЛ-1β, пг/мл	1,11±0,13*	1,64±0,09
ИЛ-6, пг/мл	6,89±0,22**	1,66±0,05
ИЛ-8, пг/мл	5,78±0,62**	30,4±0,73
ФНО-α, пг/мл	6,12±0,38**	0,57±0,02
раИЛ-1β, пг/мл	1091,4±201,4**	518,2±2,78
ИФ-ү, пг/мл	34,78±3,21**	2,1±0,08

Примечание: достоверность различий показателей по сравнению с контрольной группой при p<0,05, ** - при p<0,001.

Анализ представленной в табл.1 информации позволил выявить, что у больных рефрактерной АГ содержание провоспалительных цитокинов ИЛ-6 и ФНО- α по сравнению со здоровыми людьми контрольной группы было повышенным (p<0,001) в 4,15 и 10,7 раза соответственно при одновременном снижении ИЛ-1 β на 32,3 (p<0,05) и ИЛ-8 на 81% (p<0,05). При этом уровни рецепторного антагониста к ИЛ-1 β и ИФ- γ по сравнению с контролем была повышены (p<0,001) в 2,1 и 16,6 раза соответственно.

Содержание цитокинов в крови у больных рефрактерной АГ было ассоциировано с выраженностью дисфункции эндотелия (табл. 2). Сравнительный анализ цитокинового профиля в двух группах больных позволил отметить более высокие уровни провоспалительных цитокинов у больных при рефрактерной АГ и отсутствием метаболической устойчивости эндотелия. Причем повышение содержания изучаемых провоспалительных цитокинов носило достоверный характер (р<0,05). Концентрация противовоспалительных цитокинов у больных рефрактерной АГ не отличалась в подгруппах с разной выраженностью метаболической устойчивости эндотелиоцитов.

Таблица 3

Цитокиновый профиль у больных рефрактерной артериальной гипертензией в зависимости от функционального состояния эндотелия

Показатель	Метаболическая устойчивость	
	эндотелиоцитов	
	присутствует	отсутствует
ИЛ-1β, пг/мл	0,82±0,086	1,5±0,14*
ИЛ-6, пг/мл	4,1±0,47	7,7±0,31**
ИЛ-8, пг/мл	3,1±0,42	7,2±1,23**
ФНО-α, пг/мл	4,5±0,83	9,1±1,46**
раИЛ-1β, пг/мл	1083,4± 202,96	1097,3± 189,83
ИФ-ү, пг/мл	36,3±9,29	$39,2 \pm 9,25$

Примечание: достоверность различий показателей между группами при p<0,05, ** - при p<0,001.

Проведение корреляционно-регрессионного анализа выявило наличие тесной прямой достоверной взаимосвя-

зи между изменением линейной скорости кровотока при стимуляции холинорецепторов эндотелия и содержанием в крови ФНО- α (r=0,76, p<0,001), ИЛ-6 (r=0,71, p<0,001), ИФ- γ (r=0,69, p<0,001). Обнаруженные ассоциативные связи у больных рефрактерной АГ между содержанием в крови цитокинов и сосудодвигательной функций эндотелиоцитов позволяют дать обоснованное заключение о влиянии иммунологических регуляторных систем на функциональное состояние эндотелия.

Таким образом, развитие рефрактерной АГ сопровождается структурным повреждением эндотелиоцитов с необратимым угнетением его функционального состояния, что ассоциировано с повышением уровня провоспалительных цитокинов в плазме крови. При этом, повышение содержания противовоспалительных цитокинов можно считать как адаптивное явление, ограничивающее воспаление, которое наблюдалось вне зависимости от выраженности дисфункции эндотелия

Выводы

- 1. У больных рефрактерной АГ в 66,7% наблюдений метаболическая устойчивость эндотелиальных клеток к продуктам окислительного стресса сохранена, а в 33,3% происходит потеря резистентности к действию цитотоксических продуктов.
- 2. В ходе изучения цитокиновой системы при рефрактерной АГ наблюдаются два тесно взаимосвязанных процесса: дисбаланс между гиперпродукцией провоспалительных цитокинов (ФНО-α, ИЛ-6) и противовоспалительными цитокинами (ИЛ-4, ИФ-γ) с преобладанием первых над вторыми.
- 3. У больных рефрактерной АГ с отсутствием метаболической устойчивости эндотелия способность к эндотелийопосредованной вазодилатации при стимуляции хемо- и механорецепторов прогрессивно снижается, что ассоциировано с повышением уровня провоспалительных цитокинов в крови.

ЛИТЕРАТУРА

- Vidt D.G. Resistant Hypertension // Hypertension: A Companion to Brenner and Rector's. The Kidney. St. Louis: W.B. Saunders Company, 2010. 757 p.
- 2. Радаева О.А., Новикова Л.В., Аношкина Г.Б. Цитокиновый профиль у больных с артериальной гипертензией // Аллергология и иммунология. 2007. Т.8. №1. С.86.
- 3. Антонов А.Р., Васькина Е.А., Чернякин Ю.Д. Цитокины и биометаллы при артериальной гипертензии // Современные проблемы науки и образования. 2007. № 3 С. 7-10
- 4. Bautista L.E., Veram L.M., Arenas I.A., Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension // J. Hum. Hypertension. 2005. № 19. P. 149-154.
- Erdine S. Resistant hypertension. European Society of Hypertension Scientific Newsletter // Update on Hypertension Management. 2003. N4. P. 15-24.

- Viera A.J., Hinderliter A.L. Evaluation and management of the patient with difficult-to-control or resistant hypertension // American Family Physician. 2009. Vol.79. N10. P.863–869.
- 7. Власов С.П., Ильченко М.Ю., Казаков Е.Б. Дисфункция эндотелия и артериальная гипертензия. М., 2010. 192 с.
- 8. Ting H.H., Timimi F.K., Haley E.A., Roddy M.A. et al. Vitamin C improves endothelium-dependent vasodilation in forearm vessels of humans with hypercholes-terolemia // Circulation. 1997. Vol.95. P.2617-2622.
- Сукманова И.А., Яхонтов Д.А. Функция эндотелия и уровень мозгового натрийуретического пептида у мужчин с систолической сердечной недостаточностью в разных возрастных группах // Цитокины и воспаление. 2009. Т.8. №1. С.34-37.
- 10. Ќетлинский С.А., Симбирцев А.С. Цитокины. СПб., 2008. 552 с.

ПОСТУПИЛА: 01.04.2013