УДК 616.12-07

М.М. Батюшин, Н.С. Врублевская, И.В. Сарвилина

ВОЗМОЖНОСТИ ПРОТЕОМНОГО АНАЛИЗА БЕЛКОВ МОЧИ ДЛЯ ОЦЕНКИ ПРОГРЕССИРОВАНИЯ ХРОНИЧЕСКОЙ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ

Ростовский государственный медицинский университет, кафедра внутренних болезней $N\!\!\!\!/\ 1$

Россия, 344022, г. Ростов-на-Дону, пер.Нахичеванский, 29. E-mail: batjushin-m@rambler.ru

Цель: выявить, изменения каких белков паттерна мочи у больных ХСН ассоциированы с повышением функционального класса заболевания.

Материалы и методы: обследованы 90 пациентов с XCH II-IV ФК. Контрольную группу составили 30 практически здоровых пациентов. Дифференцированное выделение отдельных пептидов и белков мочи пациентов производили с помощью масс-спектрометрии.

Результаты: у больных XCH в протеомном профиле белков мочи выявляются маркеры альтерации почечной ткани – белок восстановления пептидогликана и β –саркогликан, повышается встречаемость толлоидоподобного белка 2 и L-антигена, связанных со структурной трансформацией на уровне нефрона. Прогрессирование XCH до конечной стадии ассоциировано с повышением встречаемости β -саркогликана, толлоидоподобного белка 2 и L- антигена. Среди сократительных белков по мере повышения Φ K XCH встречаемость катион-транспортной AT Φ -азы снижается, а изоформы 1 белка 6, ассоциированного с микротубулами – повышается, что обусловливает уменьшение активности поступления кальция в саркоплазматический ретикулум в нефроцитах и эндотелиоцитах почечных сосудов.

Заключение: изменения белкового спектра мочи у больных ХСН информационно значимы для прогноза прогрессирования основного заболевания.

Ключевые слова: хроническая сердечная недостаточность, хроническая болезнь почек, белковый профиль мочи, прогнозирование.

M.M. Batyushin, N.S. Vrublevskaya, I.V. Sarvilina

OPPORTUNITIES PROTEOMIC THE ANALYSIS OF FIBERS OF URINE FOR AN ESTIMATION OF PROGRESSING OF A CHRONIC HEART FAILURE

Rostov State Medical University,

Department of Internal Medicine № 1

29 Nakhichevansky st., Rostov-on-Don, 344022, Russia. E-mail: batjushin-m@rambler.ru

Purpose: To reveal, what changes of fibers of a pattern of urine at sick are connected by a chronic heart failure (CHF) with increase of a functional class (FC) of disease.

Materials and Methods: 90 patients with CHF II-IV FC are surveyed. Control group practically healthy 30 patients. Differentiated allocation separate proteins and fibers of urine of patients made by means of weights-spectrometry.

Results: At patients CHF in structure of fibers of urine markers of alteration of kidneys, connected with structural transformation. Progressing CHF up to a final stage it is connected with increase of occurrence β -sarcoglican, similar to tolloids fiber 2 and L-antigen. Among contracting fibers in process of increase FC CHFoccurrence cation-transport ATP decreases, and isoforms 1 fiber 6, connected with microtubuls – raises, that causes reduction of activity of receipt of calcium in sarcoplasmic rethiculum in nephrocytes and endoteliocytes vessels of kidneys.

Summary: Changes of an albuminous spectrum of urine at patients CHF it is information are significant for the forecast of progressing of a basic disease.

Keywords: a chronic heart failure, chronic illness of kidneys, proteomic the analysis of fibers of urine, forecasting.

Введение

научных исследованиях проблему взаимосвязи патогенетических изменений сердца и почек при ХСН рассматривают с двух позиций: с одной стороны, в почках формируются нарушения, обусловленные первичным поражением миокарда [1,2]. С другой стороны, почечная патология может явиться важным фактором для возникновения или усугубления уже имеющихся сердечно-сосудистых нарушений [3,4] и оказывать влияние на прогноз заболевания. Механизмы, лежащие в основе прогрессирования ХСН при присоединении почечной дисфункции, связаны с активным участием почки в синтезе ключевых медиаторов, регулирующих тонус сосудов и водно-солевой обмен (ангиотензин II, альдостерон, натрийуретические пептиды). Почка, занимая центральное место в регуляции обмена натрия и воды, влияет на системную гемодинамику не меньше, чем миокард [5]. Некоторые методы исследования почек, несмотря на высокую информационную значимость результатов, редко используются в реальной клинической практике. К таким методам можно отнести масс-спектрометрическое исследование мочи больного при ХСН. В связи с этим в настоящее время возникла необходимость обобщения результатов исследования протеомного профиля мочи для оценки значимости его нарушения в прогрессировании ХСН. Цель работы – выявить, изменения каких белков паттерна мочи у больных ХСН ассоциированы с повышением функционального класса заболевания.

Материалы и методы

В работе обследованы 90 больных ХСН. У всех больных причиной ХСН явилась ИБС. Для оценки степени тяжести и стадии ХСН были использованы Национальные Рекомендации ВНОК и ОССН по диагностике и лечению ХСН (2006). В зависимости от ФК ХСН были выделены три группы больных: в 1-й группе (n=30) пациентов наблюдали ІІ ФК ХСН, во 2-й группе (n=30) – ІІІ ФК ХСН и в 3-й группе (n=30) – ІV ФК ХСН. Контрольную группу составили 30 практически здоровых пациентов (14 мужчин и 16 женщин), средний возраст их соответствовал 62,1±1,8 лет. Выборку больных формировали случайным образом, исследование рандомизированное, открытое.

Характеристика больных с различными ФК ХСН отражена в табл.1. Увеличение ФК ХСН наблюдалось с возрастом, по мере удлинения продолжительности ИБС, длительности основной патологии.

Таблица 1. Характеристика больных с различными ФК ХСН

	Группа больных				
Показатели	1-я (II ФК),	2-я (ІІІ ФК),	3-я (IV ФК),		
	n=30	n=30	n=30		
Возраст, лет	58,5±0,9	65,3±0,5	67,2±1,1**		
М/Ж (абс)	18/ 12	17/13	16/14		
М/Ж (%)	60,0/40,0	56,7/43,3	53,3/46,7		
Длительность ИБС, лет	6,2±0,5	9,1±0,4**	10,7±0,8**°		
Длительность АГ, лет	6,1±0,7	7,0±0,4	6,4±0,5		
Длительность ХСН, лет	5,3±0,4	6,8±0,5*	7,8±0,7**		
САД, мм рт ст	158,2±1,7	161,4±1,4	162,3±2,8		
ДАД, мм рт ст	94,6±0,6	95,2±0,8	95,1±1,3		
ФВ, %	49,3±1,8	39,5±1,6**	31,1±1,5**°		

Примечание: * - p < 0.05, ** p < 0.001 при сравнении с 1-й группой, - p < 0.05, °- p < 0.001 при сравнении со 2-й группой. АГ –артериальная гипертензия, САД – систолическое АД, ДАД – диастолическое АД, ФВ – фракция выброса.

В работе были исследованы три группы белков из масс-спектрометрического профиля - структурные белки почечной ткани; белки, регулирующие клеточный рост, реакции протеолиза в клетке, процессинг нейрогормональных факторов, а также сократительные белки нефроцитов и эндотелия почечных сосудов. Дифференцированное выделение отдельных пептидов и белков мочи пациентов производилось с помощью стандартных наборов, включающих 3 вида хроматографического разделения (MB-HIC C8 Kit, MB-IMAC Cu, MB-Wax Kit, Bruker, США). Процесс пробоподготовки мочи к проведению выделения и идентификации белков включал выполнение центрифугирования биообразца на скорости 12000 об/мин и проведение аффинной хроматографии мочи с целью удаления маскирующих белков (хроматографические колонки Econo - Pac 10 DG Desalting Columns, 30, набор для очистки сывороточного IgG Econo -Pac Serum IgG Purification Kit, Bio-Rad, США). Получение масс-спектрограмм выделенных белков, полипептидных цепей и пептидов выполняли на основе технологии MALDI-TOF-TOF-MS (прибор Ultraflex II, Bruker, США). Автоматизированный анализ MALDI-TOF-TOF-MS с идентификацией специфических белков мочи пациентов проводился с помощью полной интегрированной системы компьютерных программ, включающих flexControl/ BioTools 2.1.™/ MASCOT™ (Bruker Daltonics, США). Идентификацию и анализ аминокислотной последовательности пептидов и белков проводили с помощью алгоритма Mascot Search (v2.1, Matrix Science, Лондон, Великобритания). Результаты исследования представлены в виде молекулярных профилей мочи пациентов, полученных на основе MALDI-TOF-TOF-MS пептидных фрагментов и белков, включающих выявленные белки-маркеры с указанием молекулярного веса (Мr) белков в Да. Условием включения белка-маркера в диагностический профиль являлся показатель «покрытия сиквенса» при анализе

масс-спектрограмм, который составил более 15%. Учитывался показатель «ожидаемой интенсивности пептидного фингерпринта» («Expect») для каждого обнаруженного белка в поисковой системе Mascot Search (Великобритания). Чувствительность MALDI-TOF-TOF-MS метода обнаружения белков в моче составляла 1 нг/мл.

Статистический анализ результатов исследования проводился с помощью программы STATISTICA 6.0 (StatSoft Inc., США). В работе исследованные величины были представлены в виде выборочного среднего значения и ошибки средней. Достоверность различий средних величин выборок оценивали с помощью параметрического критерия Стьюдента, поскольку распределение величин соответствовало нормальному. Проверку на нормальность распределения оценивали с помощью критерия Колмогорова-Смирнова. Статистическое сравнение долей с оценкой достоверности различий выполняли с использованием критерия χ^2 Пирсона. Во всех процедурах статистического анализа рассчитывали достигнутый уровень значимости (р), при этом критический уровень значимости принимался равным 0,05.

Результаты исследования

В 63,3% случаев при II ФК ХСН, в 66,7% наблюдений при III ФК ХСН и у всех пациентов с IV ФК ХСН наблюдалась ХБП I-IV стадий. При 2 ФК ХСН количество больных со 2-й стадией ХБП было 26,6%, а с 3-й стадией ХБП – 23,3%, 1-я и 4-я стадии ХБП встречались реже – в 10% и 3,3%, соответственно. При 3 ФК ХСН количество больных со 2-й стадией ХБП было 30%, а с 3-й стадией ХБП – 20%. Среди больных 3 ФК ХСН удельный вес пациентов с 1-й и 4-й стадией ХБП был, соответственно, 13,3% и 3,3%. При 4 ФК ХСН частота встречаемости 2-й стадии ХБП была 40%, а 3-й стадии ХБП – 46,7%. Наряду с этим, при 4 ФК ХСН в 3,3% и 10%, соответственно, наблюдали 1-ю и 4-ю стадии ХБП.

Анализ масс-спектрограмм пептидных фрагментов мочи здоровых людей контрольной группы и больных ХСН позволил выявить различную частоту обнаружения изучаемых белков мочи (табл. 2).

Таблица 2. Показатели профиля белков-маркеров в моче у больных ХСН

	Группа							
Название белка-маркера	Контрольная	1 группа (I ФК)	2 группа (II ФК)	3 группа (III ФК)	В общем по больным			
Структурные белки почечной ткани								
Белок восстановления пептидо- гликана 1β	-	8 (26,7)	10 (33,3)	14 (46,7)	32 (35,6)			
β-саркогликан	-	6 (20,0)	12 (40,0)	18(60,0)**	36 (40,0)			
Семеногелин II	26 (86,7)	25 (83,3)	26 (86,7)	27 (90,0)	78 (86,7)			
Белки, регулирующие клеточный рост, реакции протеолиза в клетке, процессинг нейрогормональных факторов								
Толлоидоподобный белок 2	17 (56,7)	24(80,0)	27(90,0)**	29 (96,7)****	80 (88,9)***			
Цитозольная α- маннозидаза	21 (70,0)	25 (83,3)	26 (86,7)	26 (86,7)	77 (85,6)			
L-антиген, член 3 семейства бел- ков LARGE	-	3 (10,0)	8 (26,7)	15 (50,0)***	26 (28,9)			
Сократительные белки нефроцитов, эндотелия почечных сосудов								
Катион-транспортная АТФ-аза	28 (93,3)	24 (80,0)	22 (73,3)	18 (60,0)"	64 (71,1)"			
Изоформа 1 белка 6, ассоциированного с микротубулами	22 (73,3)	26 (86,7)	28 (93,3)	28 (93,3)*	82 (91,1)*			

Примечание: $\dot{}$ - p<0,05, $\ddot{}$ - p<0,001, $\ddot{}$ - p<0,001 при сравнении с контрольной группой, $\dot{}$ - p<0,05, $\dot{}$ - p<0,001, $\dot{}$ - p<0,001 при сравнении с 1-й группой.

Среди структурных белков почечной ткани в моче здоровых людей в 86,7% наблюдений встречался белок семеногелин II. У больных ХСН в моче этот белок выявлялся в том же проценте случаев (86,7%), статистически значимых различий с контрольной группой и между группами больных обнаружено не было. Однако у пациентов с ХСН в отличие от контрольной группы в моче выявлялись структурные составляющие почечной ткани – белок восстановления пептидогликана 1β (35,6%), β -саркогликан (40%), что явилось маркером альтерации почечной ткани. Причем по мере повышения ФК ХСН встречаемость этих белков увеличивалась и для β -саркогликана: при III ФК ХСН сформировалось статистически значимое различие

по сравнению с І ФК ХСН (p<0,01). Среди белков, регулирующих клеточный рост, реакции протеолиза в клетке, процессинг нейрогормональных факторов, основное отличие между больными ХСН и контрольной группой сложилось для толлоидоподобного белка 2 и L-антигена как члена 3 семейства белков LARGE. Встречаемость этих белков в моче больных ХСН была выше по сравнению с паттерном пептидов мочи у здоровых людей, причем прогрессирование тяжести ХСН сопровождалось более частым выявлением этих белков, что было связано с изменением активности процессов структурной трансформации на уровне нефрона. Среди сократительных белков нефроцитов и эндотелия почечных сосудов у больных

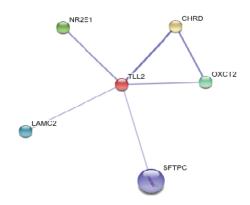
ХСН были выявлены разнонаправленные изменения. По мере повышения ФК ХСН встречаемость катион-транспортной АТФ-азы снижалась, а изоформы 1 белка 6, ассоциированного с микротубулами – повышалась. Такая направленность изменений свидетельствовала об уменьшении активности поступления кальция из цитозоля в саркоплазматический ретикулум с последующим сниже-

нием активности работы внутриклеточного цикла сокращение/релаксация с участием актина и высвобождаемой энергии АТФ.

Оценка влияния изменений белков протеомного профиля мочи больных XCH на повышение ФК XCH и параметры почечной дисфункции была определена по критерию Пирсона и отражена в табл. 3.

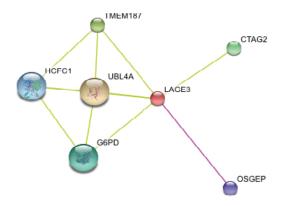
Таблица 3. Выраженность влияния изменений белков протеомного профиля мочи больных XCH на повышение ФК XCH и параметры почечной дисфункции

Название белка-маркера	ФК ХСН	СКФ	МАУ	Креатинин
Белок восстановления пептидогли-	$\chi^2=0,43;$ p=0,51	χ ² =0,65;	χ ² =4,31;	χ ² =4,66;
кана 1β		p=0,42	p=0,038	p=0,03
β -саркогликан	χ ² =4,0;	χ ² =3,9;	χ ² =0,2;	χ ² =1,0;
	p=0,046	p=0,048	p=0,65	p=0,32
Семеногелин II	χ ² =0,27;	$\chi^2=0,17;$	$\chi^2=0,43;$	χ ² =0,4;
	p=0,61	p=0,68	p=0,51	p=0,53
Толлоидоподобный белок 2	$\chi^2=6.8;$ p=0.009	$\chi^2=4,74;$ p=0,03	χ ² =4,19; p=0,04	$\chi^2=3,92;$ p=0,05
Цитозольная α-маннозидаза	χ ² =0,13; p=0,71	$\chi^2=0.73;$ $p=0.39$	$\chi^2=6,2;$ p=0,013	χ ² =3,07; p=0,05
L-антиген, член 3 семейства белков LARGE	χ ² =5,65;	χ ² =0,58;	χ ² =4,2;	χ ² =4,11;
	p=0,017	p=0,45	p=0,04	p=0,04
Катион- транспортная АТФ-аза	$\chi^2=4,75;$ p=0,03	$\chi^2=1,33;$ $p=0,25$	χ ² =6,84; p=0,009	χ ² =8,22; p=0,004
Изоформа 1 белка 6, ассоциирован-	$\chi^2=3,59;$	$\chi^2=0,23;$	χ ² =8,9;	χ ² =4,98;
ного с микротубулами	p=0,05	p=0,63	p=0,003	p=0,026

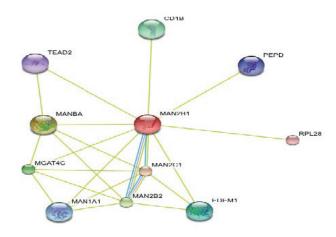

Среди структурных белков почечной ткани установлена значимая причинно-следственная связь между появлением в моче белка восстановления пептидогликана 1 ви выраженностью МАУ, гиперкреатинемией. От появления β-саркогликана, напротив, зависела тяжесть ХСН и уровень СКФ, а, следовательно, и стадия ХБП. Среди белков, регулирующих клеточный рост, появление в моче толлоидоподобного белка 2, а также L-антигена оказывало влияние на прогрессирование ХСН, снижение СКФ, выраженность МАУ и накопление креатинина в крови. Цитозольная а-маннозидаза в моче была связана с МАУ и гиперкреатиниемией. От встречаемости сократительных белков нефроцитов, эндотелия почечных сосудов зависели все изучаемые показатели, кроме СКФ. Таким образом, изменение протеомного профиля белков мочи у больных ХСН было сопряжено с тяжестью основного заболевания и параметрами почечной дисфункции.

Обсуждение

В последнее время быстро нарастает количество информации о характере структуры белков при различных патологических процессах. В работе были изучены белковые маркеры альтерации почечной ткани при ХСН. Экспрессия бета-саркогликана и белка 1 бета, восстанавливающего пептидогликан, была зарегистрирована


только в группах больных ХСН и может быть связана с появлением структурных изменений как в нефроцитах, так и в сосудах почек. При этом бета-саркогликан может приводить к вазоконстрикции на уровне сосудов почек. Снижение интенсивности экспрессии семеногелина II в моче пациентов с ХСН при наличии поражения почек свидетельствовало об уменьшении формирования структурного геля матрикса нефроцитов.

Межмолекулярные взаимодействия белков, регулирующих клеточный рост, реакции протеолиза в клетке, процессинг нейрогормональных факторов (толлоидоподобный белок 2, L-антиген, член 3 семейства белков LAGE, лизосомальная альфа-маннозидаза B1), представлены на рис. 1-3. Наиболее важным является взаимодействие толлоидоподобного белка 2 с белком С, связанным с сурфактантом, уровень экспрессии которого в моче увеличивается вместе с интенсивностью экспрессии толлоидоподобного белка 2 при прогрессировании поражения почек в условиях ХСН (рис. 1). Белок С, связанный с сурфактантом, является адгезивным и выполняет функции компонента базальных мембран клеток, которые существенно нарушаются при поражении почек в условиях сосудистого спазма, тромбо-геморрагического синдрома, гипоксии, вызывая дополнительное повреждение эндотелия сосудов почек, нефроцитов.


Рис. 1. Схема молекулярных взаимодействий толлоидоподобный белок 2.

Примечание: TLL2 – толлоидоподобный белок 2, CHRD – хордин, NR2E1 – ядерный рецептор NR2E1, OXCT2 – сукцинил-КоА-3-кетоацид-КоА трансфераза 2, LAMC2 – ламинин, γ2цепь, SFTPC – белок C, связанный с сурфактантом

Рис. 2. Схема молекулярных взаимодействий L-антигена, члена 3 семейства белков LAGE.

Примечание. LAGE3 - L-антиген, член 3 семейства белков LAGE, UBL4A – убиквитино-подобный белок 4A, TMEM187 – трансмембранный белок 187, CTAG2 – антиген 2 рака яичек, G6PD – глюкозо - 6 - фосфат 1 - дегидрогеназа, HCFC1 – сигнал-воспринимающий C1 фактор, OSGEP – О-сиалогликопротеиновая эндопептидаза.

Рис. 3. Схема межмолекулярных взаимодействий цитозольной альфа-маннозидазы.

Примечание. MAN2B1 – цитозольная альфа-маннозидаза, MAN2C1 – альфа-маннозидаза 2C1, MANBA – бета-маннозидаза, MAN2B2 – специфичная альфа-маннозидаза, MGAT4C – УДФ – N – глюкозамин-альфа – 1,3 – D – манозид бета-1,4 – N – ацетилглюкозаминилтрансфераза IV, CD1B – Т-клеточный поверхностный гликопротеин CD1b, EDEM1 – альфа-маннозидазоподобный белок 1, MAN1A1 – маннозил-олигосахарид 1,2-альфа-маннозидаза IA, PEPD – Хаа-продипептидаза, TEAD2 – транскрипционный фактор TEF-4, RPL28 – 60S рибосомальный белок

Белок L-антиген, член 3 семейства белков LAGE, в высокой экспрессии обнаруживался только в моче пациентов с XCH, в наибольшей степени при III-IV ФК XCH, что отражало нарастание в ткани почек гипоксии и процессов структурной перестройки в нефроцитах.

Белок цитозольная альфа-маннозидаза необходим для реализации катаболизма углеводов, высвобождающихся из гликопротеинов, составляющих мембранные структуры клетки. Увеличение прироста пациентов с высокой экспрессией этого белка в моче при прогрессировании ХСН свидетельствовало о выраженных структурных изменениях на уровне нефроцитов. Повышение экспрессии цитозольной альфа-маннозидазы может быть связано с высокой экспрессией функциональных групп белков, регулирующих тонус сосудов и активность свертывающей и противосвертывающей систем крови на уровне почечной ткани.

Динамика сократительных белков нефроцитов, эндотелия почечных сосудов, заключающаяся в увеличении прироста значений абсолютного количества пациентов с высокой экспрессией изоформы 1 белка 6, ассоциированного с микротубулами, и снижении прироста значений абсолютного количества пациентов с высокой экспрессией катион-транспортной АТФазы, отражала уменьшение активности поступления кальция из цитозоля в саркоплазматический ретикулум с последующим снижением энергетического обеспечения процессов сокращения и расслабления.

Таким образом, анализ интенсивности экспрессии функциональных групп белков, составляющих молекулярные паттерны мочи пациентов с XCH разных стадий,

позволил доказать существование множества взаимосвязанных специфических молекулярных маркеров возникновения и прогрессирования поражения почечной ткани в условиях повышения ФК ХСН у больных. Проведение масс-спектрометрического исследования белков мочи при сердечно-сосудистых заболеваниях способствует выявлению новых маркеров прогнозирования прогрессирования ХСН и повреждения органов-мишеней.

Выводы

- У больных ХСН в отличие от здоровых людей в протеомной профиле белков мочи выявляются маркеры альтерации почечной ткани: в 35,6% белок восстановления пептидогликана, в 40% β-саркогликан, повышается встречаемость толлоидоподобного белка 2 и L-антигена, связанных со структурной трансформацией на уровне нефрона.
- Прогрессирование ХСН до конечной стадии ассоциировано с повышением встречаемости в белковом профиле мочи β-саркогликана, толлоидоподобного белка 2 и L-антигена. Среди сократительных белков нефроцитов и эндотелия почечных сосудов по мере повышения ФК ХСН встречаемость катион-транспортной АТФ-азы снижается, а изоформы 1 белка 6, ассоциированного с микротубулами повышается, что обусловливает уменьшение активности поступления кальция из цитозоля в саркоплазматический ретикулум в нефроцитах и эндотелиоцитах почечных сосудов.

ЛИТЕРАТУРА

- Go A.S., Yang J., Ackerson L.M. et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study // Circulation. 2006. № 113(23). P. 2713–2723.
- Elsayed E.F., Tighiouart H., Griffith J. Cardiovascular Disease and Subsequent Kidney Disease //Arch. Intern. Med. – 2007. – № 167. – P. 1130–1136.
- 3. Смирнов А.В., Добронравов В.А., Каюков И.Г. Кардиоренальный континуум: патогенетические основы превентивной нефрологии //Нефрология. 2005. № 9(3). С. 7–15.
- Шутов А.М., Мардер Н.Я., Хамидулина Г.А., Мухорин В.П., Машина Т.В., Антонова С.В. Хроническая сердечная недостаточность у больных с хронической болезнью почек // Нефрология и диализ. – 2005. – № 7(2). – С. 140–144.
- Lee Y.A., Liang C.S., Lee M.A., Lindpaintner K. Local stress, not systemic factors, regulate gene expression of the cardiac reninangiotensin system in vivo: a comprehensive study of all its components in the dog //Proc. Nath. Acad. Sci. USA. – 2006. – № 93(20). – P. 11035–11040.

ПОСТУПИЛА: 27.05.2010